期刊文献+

云计算环境下多有向无环图工作流的节能调度算法 被引量:8

Energy efficient scheduling for multiple directed acyclic graph in cloud computing
下载PDF
导出
摘要 针对多有向无环图(DAG)工作流节能调度算法中存在的节能效果不佳、适用范围较窄和无法兼顾性能优化等问题,提出了一种新的多DAG工作流节能调度方法——MREO。MREO在对计算密集型和通信密集型任务特点进行分析的基础上,通过整合独立任务,减少了处理器的数量,并利用回溯和分支限界算法对任务整合路径进行动态的优化选择,有效降低了整合算法的复杂度。实验结果证明,MREO在保证多DAG工作流性能的前提下,能够有效降低系统的计算和通信能量开销,获得了良好的节能效果。 Energy-efficient scheduling algorithms based on multiple Directed Acyclic Graph (DAG) fail to save energy efficiently, have a narrow application scope and cannot take performance optimization into account. In order to solve these problems, Multiple Relation Energy Optimizing (MREO) was proposed for multiple DAG workflows. MREO integrated independent tasks to reduce the number of processors used, on the basis of analyzing the characteristics of computation-intensive and communication-intensive tasks. Backtracking and branch-and-bound algorithm were employed to select the best integration path dynamically and reduce the complexity of the algorithm at the same time. The experimental results demonstrate that MREO can reduce the computation and communication energy cost efficiently and get a good energy saving effect on the premise of guaranteeing the performance of multiple DAG workflows.
出处 《计算机应用》 CSCD 北大核心 2013年第9期2410-2415,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61063042 61262088) 新疆维吾尔自治区自然科学基金资助项目(2011211A011)
关键词 多有向无环图 整合 节能调度 能耗 multiple Directed Acyclic Graph (DAG) integration Energy-Efficient Scheduling (EES) energy consumption
  • 相关文献

参考文献17

  • 1CHASE J, ANDERSON D, THAKAT P, et al. Managing energy and server resources in hosting centers[ C]//Proceedings of the 18th Symposium on Operating Systems Principles. Canada: ACM Press, 2001: 103-116.
  • 2ELNOZAHY E N, KISTLER M, RAJAMONY R. Energy-efficient server clusters [ C]// Proceedings of the 2nd International Confer- ence on Power-aware Computer Systems. New York: ACM Press, 2003:179 - 197.
  • 3HUANG Q j, SU S, LI J, et al. Enhanced energy-efficient schedu- ling for parallel applications in cloud[ C]// Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. New York: ACM Press, 2012:781-786.
  • 4HSU C, FENG W. A power-aware run-time system for high-perform- ance computing[ C]//Proceedings of the 2005 ACM/IEEE Confer- ence on Supercomputing. Washington, DC: IEEE Computer Socie- ty, 2006:258 -267.
  • 5ZHU D, MELHEM R, CHILDERS B. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems[ J]. Parallel and Distributed Systems, 2003, 14 (7): 686-700.
  • 6RANAWEERA S , AGRAWAL D P . A task duplication based scheduling algorithm for heterogeneous systems[ C]//Proceedings of the 2000 Parallel and Distributed Processing Symposium. Piscat- away, NJ: IEEE Press, 2000:445-450.
  • 7ZONG Z L, MANZANARES A, RUAN X J, et al. EAD and PEBD: two energy-aware duplication scheduling algorithms for par- allel tasks on homogeneous clusters [ J]. IEEE Transactions on Com- puters, 2011, 60(3) : 360 - 374.
  • 8李新,贾智平,鞠雷,赵衍恒,宗子良.一种面向同构集群系统的并行任务节能调度优化方法[J].计算机学报,2012,35(3):591-602. 被引量:21
  • 9BRAUN T, SIEGEL H, BECK N, et al. A comparison of eleven static heuristics for mapping a class of independent tasks onto hetero- geneous distributed computing systems[ J]. Journal of Parallel and Distributed Computing, 2001, 61(6) : 810 - 837.
  • 10ZHAO H N, SAKELLARIOU R. Scheduling multiple DAGs onto heterogeneous systems[ C]// Proceedings of the 20th International Parallel and Distributed Processing Symposium, Piscataway, NJ: IEEE Press, 2006:54 - 67.

二级参考文献5

共引文献32

同被引文献52

  • 1张希翔,李陶深.云计算下适应用户任务动态变更的调度算法[J].华中科技大学学报(自然科学版),2012,40(S1):165-169. 被引量:5
  • 2刘鹏.云计算的定义和特点[EB/OL].(2009-02-15)[2009-06-16].http://www.chinacloud.cn/show.aspx?id=741&cid=17.
  • 3Du Z H, Hu J K, Chen Y N, Wang X Y. Optimized QoS-aware replica placement heuristics and applications in astronomy data grid [J]. The journal of Systems and software, 2011, 84 (7): 1224 - 1232.
  • 4Vaquero L M, Rodero Merino L, Moran D. Locking the sky, a sur- vey on IaaS cloud security [J]. Computing, 2011, 91 (1). 93 -118.
  • 5Malik S, Huef F, Caromel D. Reliability aware scheduling in cloud computing EA. Proceedings of the 2012 international conference for internet technology and secured transactions. Pisca-away, Nj:IEEEpress [C]. 2012. 194-200.
  • 6Kang Q, He H, Wei J. An effective iterated greedy algorithm for reliability-oriented task allocation in distributed computing systems [J]. Journal of parallel and distributed computing, 2013, 73 (8) 1106 - 1115.
  • 7ABDEYAZDAN M, PARSA S, RAHMANI A M. Task graph pre- scheduling, using Nash equilibrium in game theory[ J]. The Journal of Supereomputing, 2013, 64(1) : 177 -203.
  • 8LIU K, JIN H, CHEN J, et al. A compromised-time-cost scheduling algorithm in swindew-c for instance-intensive cost-constrained work- flows on a cloud computing platform[ J]. International Journal of High Performance Computing Applications, 2010, 24 (4) : 445 - 456.
  • 9PANDEY S, WU L, GURU S M, et al. A particle swarm optimization- based heuristic for scheduling workflow applications in cloud computing environments [ C ]// Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications. Piscataway: IEEE, 2010:400-407.
  • 10BUYYA R, YEO C S, VENUGOPAL S. Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities [ C ]// Proceedings of the 10th IEEE International Conference on High Performance Computing and Communications. Piscataway: IEEE, 2008 : 5 - 13.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部