期刊文献+

基于高斯加权和流形的高保真彩色图像降噪 被引量:3

Color image denoising based on Gaussian weighting and manifold for high fidelity
下载PDF
导出
摘要 针对用矢量法对彩色图像进行降噪处理,算法复杂度较高,无法达到实时处理的问题,提出了基于改进高斯加权和自适应流形的高保真彩色图像降噪方法。首先,将彩色图像用非局部均值算法得到高维数据,使用改进的高斯内核对彩色图像进行加权计算;然后,采用抛雪球方法处理这些高维数据,以高斯距离为权值,投影每个像素点的颜色到自适应流形;接着,对流形进行平滑降维,采用迭代法实现图像平滑;最后,收集流形中的平滑值,将平滑值对所有像素进行插值,得到降噪后的图像数据。实验证明,该方法对彩色图像进行降噪处理后,能够很好地保留原图像的细节,不会掺杂周围像素的颜色,算法处理速度较快,能够达到实时处理效果,降噪效果与原算法相比峰值信噪比(PSNR)提高近2.0 dB,结构相似度提高了1百分点以上。 Using vector method for color image denoising, the complexity of the algorithm is high and cannot achieve real- time performance. A method for high fidelity color image denoising was proposed based on Gaussian weighting and adaptive manifold. Firstly, it used the non-local means algorithm to get high-dimensional data, and used the improved Gaussian kernel to calculate the weight of color image. Secondly, splatting method was used to deal with the high-dimensional data, and a Gaussian distance-weighted projection of the colors of all pixels was performed onto each adaptive manifold. Thirdly, smooth dimensionality reduction was done on convection shape, and iterative method was used for image smoothing. Finally, the final filter response was computed for each pixel by interpolating blurred values gathered from all adaptive manifolds. The experimental results show that the algorithm has a superior denoising performance than the original one, and it also can improve real-time performance. By using this algorithm, the details can be preserved well. Peak Signal-to-Noise Ratio (PSNR) can be improved nearly 2.0 dB, and Structural Similarity Index Measurement (SSIM) can be improved more than 1%.
出处 《计算机应用》 CSCD 北大核心 2013年第9期2588-2591,2613,共5页 journal of Computer Applications
基金 科技部科研院所技术开发研究专项(2012EG137242)
关键词 彩色图像 高斯加权 非局部均值 自适应流形 高维滤波器 图像降噪 color image Gaussian weighting non-local means adaptive manifold high-dimensional filter image denoising
  • 相关文献

参考文献15

  • 1朱景福,黄凤岗.一种高阶各向异性扩散小波收缩图像降噪算法[J].计算机应用,2009,29(8):2068-2070. 被引量:2
  • 2刘新,葛洪伟,徐冰纯.基于相似性噪声检测的边缘保护滤波算法[J].计算机应用,2012,32(3):739-741. 被引量:1
  • 3BUADES A, COLE B, MOREL J M. A review of image denoising algorithms with a new one [ J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 4KOSCHAN A , ABIDI M . Digital color image processing [ M ] . Knoxville: John Wiley & Sons, 2009.
  • 5GASTAL E S L, OLIVEIRAY M M. Domain transform for edge-a- ware image mid video processing [ J]. ACM Transactions on Graph- ics, 2011, 30(4): Article No. 69.
  • 6ADAMS A, BAEK J, DAVIS M A. Fast high-dimensional filtering using the pernmtohedral lattice [ J]. Eurographics, 2010, 29(2) : 753 - 762.
  • 7ADAMS A. Gaussian KD-trees for fast high-dimensional filtering [ J]. ACM Transactions on Graphics, 2009, 28(3) : 1 - 11.
  • 8BUADES A, COLL B, MOREL J M. Non-local image and movie denoising [ J]. International Journal of Computer Vision, 2007, 76 (2): 123-139.
  • 9SUN W F, PENG Y H, HWANG W L. Modified similarity metric for non-local means algorithm [J]. Electronics Letters, 2009, 45 (25): 1307 -1309.
  • 10JI Z X, CHEN Q, SUN Q s. A moment-based non-local means al- gorithm for image denoising [J]. Intbrmation Processing Letters, 2009, 109(23/24) : 1238 - 1244.

二级参考文献15

  • 1张旭明,徐滨士,董世运.用于图像处理的自适应中值滤波[J].计算机辅助设计与图形学学报,2005,17(2):295-299. 被引量:159
  • 2王正明,谢美华.偏微分方程在图像去噪中的应用[J].应用数学,2005,18(2):219-224. 被引量:17
  • 3贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法[J].计算机学报,2005,28(5):882-891. 被引量:28
  • 4潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 5SUN T,NEUVO Y.Detail-preserving median based filters in image processing[J].Pattern Recognition Letters, 1994,15(4):341-347.
  • 6KANG C-C,WANG W J.Modified switching median filter with one more noise detector for impulse noise removal[J].AEU-International Journal of Electronics and Communications,2009,63(11):998-1000.
  • 7GARNETT R,HUEGERICH T,CHUI C, et al.A universal noise removal algorithm with an impulse detector[J].IEEE Transactions on hnage Processing,2005,14(11):1747-1754.
  • 8HUANG C-C, LIEN C-Y,CHEN P-Y.A decision-treee-based denoising approach for efficient removal of impulse noise[C] // Proceedings of the 2nd International Symposium on Aware Computing.Piscataway,NJ: IEEE Press,2010:74-79.
  • 9ZHANG S Q,KARM M A.A new impulse detector for switching median filtering[J].IEEE Signal Processing Letters,2002,9(11):360-363.
  • 10CHEN T,WU H R.Adaptive impulse detection using center-weighted median filters[J]. IEEE Signal Processing Letters,2001, 8(1):1-3.

共引文献1

同被引文献28

  • 1赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 2齐丽娜,张博,王战凯.最大类间方差法在图像处理中的应用[J].无线电工程,2006,36(7):25-26. 被引量:119
  • 3CHEN C R,RAMASWAMY H S.Color and texture change kinetics in ripening bananas[J].LWT-Food Science and Technology,2002,35(5):415-419.
  • 4HU M H,DONG Q L,LIU B L,et al.The potential of double K-means clustering for banana image segmentation[J].Journal of Food Process Engineering,2014,37(1):10-18.
  • 5工信部.移动互联网白皮书[R].北京.2013.
  • 6ZHU F,BOSCH M,WOO I,et al.The use of mobile devices in aiding dietary assessment and evaluation[J].Selected Topics in Signal Processing,2010,4(4):756-766.
  • 7CATHAL G,FRANK H,WOLFGANG H,et al.Lecture Notes in Computer Science[M].Dublin:Springer International Publishing,2014:369-373.
  • 8OLIVEIRA L,COSTA V,NEVES G,et al.A mobile,lightweight,poll-based food identification system[J].Pattern Recognition,2014,47(5):1 941-1 952.
  • 9IQBAL Z,ERIKSSON M.Classification and quantitative optical analysis of liquid and solid samples using a mobile phone as illumination source and detector[J].Sensors&Actuators B Chemical,2013,185(8):354-362.
  • 10MESAS-CARRASCOSA F J,CASTILLEJO-GONZLEZ I L,ORDEN M S D L,et al.Real-time mobile phone application to support land policy[J].Computers&Electronics in Agriculture,2012,85(5):109-111.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部