期刊文献+

改进的自适应混合高斯前景检测方法 被引量:6

Improved object detection method of adaptive Gaussian mixture model
下载PDF
导出
摘要 针对混合高斯背景模型计算量大、存在阴影和鬼影的不足,提出一种基于混合高斯模型的改进前景检测算法。通过分析背景的稳定性来选择连续或隔帧更新方式对背景模型中的参数进行更新,提高算法的运算速度。在背景更新方面,让更新率与权值相关联从而使更新率随权值改变并且对目标移动后显露的背景像素给予更大的更新率,提高背景的稳定性并解决鬼影现象及前景与背景转化的问题。对检测出的目标,用适应性更高的RGB颜色空间畸变模型进行阴影检测和消除,并进行高斯金字塔滤波和形态学滤波处理,以得到更好的前景目标。实验结果表明,该方法能提高算法的计算效率且准确地分割前景目标。 The deficiency of Gaussian Mixture Model (GMM) is of high computation cost and cannot deal with the shadow and ghosting. An improved foreground detection algorithm based on GMM was proposed in this paper. By analyzing the stability of the background, intermittent or continuous frame updating was chosen to update the parameters of the GMM. It can efficiently reduce the runtime of the algorithm. In the background updating, the updating rate was associated with the weight and this made it change with the weight. The background pixels which appeared after the objects moving were set a larger updating rate. It can improve the stability of the background and solve the problem of ghosting phenomenon and the transformation of background and foreground. After objects detection, the algorithm eliminated the shadow based on the RGB color space distortion model and treated the result by Gauss pyramid filtering and morphological filtering. Through the whole process, a better contour was obtained. The experimental results show that this algorithm improves the calculation efficiency and accurately segments the foreground object.
出处 《计算机应用》 CSCD 北大核心 2013年第9期2610-2613,共4页 journal of Computer Applications
基金 国家科技支撑计划项目(2013BAJ13B05)
关键词 混合高斯模型 隔帧更新 背景更新率 阴影消除 高斯金字塔滤波 Gaussian Mixture Model (GMM) intermittent frame updating background updating rate shadow elimination Gauss pyramid filter
  • 相关文献

参考文献11

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2STAUFFER C, GRIMSON W. Adaptive background mixture models for real-time tracking[ C]//Proceedings of the 1999 IEEE Computer Society Contrence on Computer Vision and Pattern Recognition. Piscataway, N J: IEEE Press, 1999, 2:246 - 252.
  • 3ZIVKOVIC Z. Improved adaptive Gaussian mixture model for back- ground subtraction[ C]//ICPR 2004: Proceedings of the 17th Inter- national Conference on Pattern Recognition. Piscataway, NJ: IEEE Press, 2004, 2:28 -31.
  • 4刘静,王玲.混合高斯模型背景法的一种改进算法[J].计算机工程与应用,2010,46(13):168-170. 被引量:55
  • 5杨涛,李静,潘泉,程咏梅.一种基于多层背景模型的前景检测算法[J].中国图象图形学报,2008,13(7):1303-1308. 被引量:17
  • 6CHEN B S, LEI Y Q. Indoor and outdoor people detection and shadow suppression by exploiting HSV color information [ C]//Pro- ceedings of CIT 2004: the Fourth International Conference on Com- puter and Information Technology. Piscataway, NJ: IEEE Press, 2004:137 - 142.
  • 7WANG H Z, SUTER D. A re-evaluation of mixture of Gaussian background modeling[ J]. ICASSP 2005: Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ: IEEE Press, 2005, 2: ii/lO17 - ii/ 1020.
  • 8白向峰,李艾华,李喜来,李仁兵.新型背景混合高斯模型[J].中国图象图形学报,2011,16(6):983-988. 被引量:29
  • 9刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:110
  • 10PRATI A, MIKIC I, TRIVED! M, et al. Detecting moving shad- ows: algorithms and evaluation[ J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2003, 25(7) : 918 -923.

二级参考文献67

共引文献305

同被引文献64

  • 1邱祯艳,王修晖.一种结合Grabcut的Vibe目标检测算法[J].中国计量学院学报,2012,23(3):250-256. 被引量:14
  • 2王艳华,刘伟宁,陈爱华.基于小波变换的海空背景下小目标检测研究[J].电子器件,2007,30(3):992-994. 被引量:4
  • 3姚志均,许毅平,魏蛟龙,周宁.视频监控系统中运动目标的检测和阴影抑制[J].计算机工程与应用,2007,43(21):232-234. 被引量:5
  • 4阮秋琦,译.数字图像处理(MATLAB版)[M].北京:电子工业出版社,2005:305-307.
  • 5陈振华,周锐锐,李光伟,毕笃彦.一种改进的高斯混合背景模型算法及仿真[J].计算机仿真,2007,24(11):190-193. 被引量:16
  • 6ZHENG G, CHEN Y. A review on vision-based pedestrian detection [ C] // Proceedings of the 2012 IEEE Global High Tech Congress on Electronics. Piscataway: IEEE, 2012:49-54.
  • 7YANG H, SHAO L, ZHENG F, et al. Recent advances and trends in visual tracking: a review [ J]. Neurocomputing, 2011, 74( 18): 3823 - 3831.
  • 8AGRAWAL D, MEENA N. Performance comparison of moving ob- ject detection techniques in video surveillance system[ J]. The Inter- national Journal of Engineering and Science, 2013, 2(1) : 240 - 242.
  • 9WANG C, WATADA J. Robust color image segmentation by Kar- hunen-Loeve transform based Otsu multi-thresholding and K-means clustering [ C]//Proceedings of the 5th International Conference on Genetic and Evolutionary Computing. Piseataway: IEEE, 2011 : 377 - 380.
  • 10SAHOO A K, PATNAIK S, BISWAL P K, et al. An efficient algo- rithm for human tracking in visual surveillance system[ C]// Pro- ceedings of the 2013 IEEE Second International Conference on Im- age Information Processing. Piscataway: IEEE, 2013:125-130.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部