期刊文献+

基于解剖非局部先验的模糊扩散PET重建算法

Fuzzy diffusion PET reconstruction algorithm based on anatomical non-local means prior
下载PDF
导出
摘要 针对传统最大后验(MAP)算法出现阶梯伪影以及不能有效保持重建图像低梯度值处细节信息的问题,提出了一种基于解剖非局部先验的模糊扩散正电子发射计算机断层扫描(PET)重建算法。首先,对中值先验分布的MAP重建进行改进,在每次中值滤波前引入结合模糊函数的各向异性扩散滤波器;然后,采用模糊隶属度函数作为各向异性扩散过程的扩散系数,并结合解剖非局部先验来考虑图像的细节信息。仿真结果表明,与传统算法相比,该算法提高了信噪比(SNR),具有良好的抗噪性;同时视觉效果较好,图像边缘清晰,在抑制噪声和边缘保持方面取得了良好的折中。 A fuzzy diffusion Positron Emission Tomography (PET) reconstruction algorithm based on anatomical non-local means prior was proposed to solve the problem in traditional Maximum A Posteriori (MAP) algorithm, that the details at low gradient value of reconstruction image cannot be maintained effectively and the appeared ladder artifacts. Firstly, the median prior distribution MAP reconstruction algorithm was improved, namely an anisotropic diffusion filter combined with fuzzy function was introduced before each median filtering. Secondly, the fuzzy membership function was used as diffusion coefficient in the anisotropic diffusion process, and the details of the image were considered by anatomical non-local prior information. The simulation results show that, compared with the traditional algorithms, the new algorithm improves the Signal-to-Noise Ratio (SNR) and anti-noise capability, and has good visual effects and clear edges. Thus the algorithm achieves a good balance between noise reduction and edge maintenance.
出处 《计算机应用》 CSCD 北大核心 2013年第9期2627-2630,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071192 61271357) 山西省自然科学基金资助项目(2009011020-2) 山西省研究生优秀创新项目(2009011020-2) 山西省高等学校优秀青年学术带头人支持计划项目
关键词 最大后验 图像重建 模糊隶属度 中值先验 各向异性扩散 Maximum A Posterior (MAP) image reconstruction fuzzy membership median prior anisotropic diffusion
  • 相关文献

参考文献14

  • 1RAHMIM A, ZAIDI H. PET versus SPECT : strengths, limitations and challenges [ J]. Nuclear Medicine Communications, 2008, 29 (3): 193-207.
  • 2路利军,马建华,黄静,毕一鸣,刘楠,陈武凡.基于解剖自适应的非局部先验贝叶斯PET图像重建[J].中国生物医学工程学报,2011,30(3):326-332. 被引量:2
  • 3BUADES A, COLL B, MOREL J-M. A non-local algorithm for im- age denoising [ C]// CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Paltena Rec- ognition. Washington, DC: IEEE Computer Society, 2005, 2:60 - 65.
  • 4CHEN Y, MA J H, FENG Q J, et al. Nonlocal prior Bayesian to- mographic reconstruction [ J]. Journal of Mathematical Imaging and Vision, 2008, 30(2): 133-146.
  • 5ALENIUS S, RUOTSALAINEN U. Generalization of median root prior reconstruction [ J]. IEEE Transactions on Medical Imaging, 2002, 21(11): 1413-1420.
  • 6HSIAO T, RANGARAJAN A, GINDI G. A new convex edge-pre- serving median prior with applications to tomography[ J]. IEEE Transactions on Medical Imaging, 2003, 22(5): 580-585.
  • 7SHEPP L A, VARDI Y. Maximum likelihood reconstruction for e- mission tomography [ J]. 1EEE Transactions on Medical Imaging, 1982, 1(2): 113-122.
  • 8LIPINSKI B, HERZOG H, ROTA KOPS E, et al. Expectation maximization reconstruction of positron emission tomography images using anatomical magnetic resonance information [ J]. IEEE Trans- actions on Medical Imaging, 1997, 16(2) : 129 - 136.
  • 9NGUYEN V-G, LEE S-J. Nonlocal-means approaches to anatomy- based PET image reconstruction [ C]// Proceedings of the 2010 IEEE Nuclear Science Symposium Conference Record. Piscataway, NJ: IEEE Press, 2010:3273-3277.
  • 10NGUYEN V-G, LEE S-J. Anatomy-based PET image reconstruc- tion using nonlocal regularization [ C ]// Proceedings of SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging, 83133T. Bellingham, WA: SHE Press, 2012: 83133T.

二级参考文献19

  • 1Rahmim A,Zaidi H.PET versus SPECT:strengths,limitations and challenges[J].Nucl Med Commun,2008,29(3):193 -207.
  • 2Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Trans Med Imaging,1990,9(4):439-446.
  • 3Geman S,Geman D.Stochastic relaxation,Gibbs distribution,and the Bayesian restoration of images[J].IEEE Trans Patt Analy and Mach Intell,1984,26(2):721-741.
  • 4Li SZ.Markov Random Field Modeling in Image Analysis[M].Tokyo:Springer-Verlag,2001.
  • 5Gindi G,Lee M,Rangarajan A,et al.Bayesian reconstruction of functional images using anatomical information as priors[J].IEEE Trans Med Imaging,1993,12(4):670-680.
  • 6Chlewicki W,Hermansen F,Hansen SB,et al.Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior[J].Phys Med Biol,2004,49(20):4717-4730.
  • 7Comtat C,Kinahan PE,Fessler JA,et al.Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels[J].Phys Med Biol,2002,47 (1):1-20.
  • 8Bowsher JE,Johnson VE Turkington TG,et al.Bayesian reconstruction and use of anatomical a priori information for emission tomography[J].IEEE Trans Med Imaging,1996,15(5):673-686.
  • 9Bruyant PP,Gifford HC Gindi G,et al.Numerical observer study of MAP-OSEM ragularization methods with anatomicalpriors for lesion detection in/sup 67/Ga images[J].IEEE Trans Nucl Sci,2004,51(1):193 -197.
  • 10Vogel WV,Oyen WJ,Barentsz JO,et al.PET/CT:Panacea,redundancy,or something in between?[J].J Nucl Med,2004,45(1 suppl 1):15S -24S.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部