期刊文献+

矩形窄缝通道近壁汽泡滑移和浮升可视化实验研究 被引量:2

Visualized Experimental Study on Sliding and Lift-Off of Bubbles in Narrow Rectangular Channel
下载PDF
导出
摘要 采用高速摄像仪从宽面和窄面拍摄、观察矩形窄缝通道内近壁汽泡滑移、浮升运动,发现在加热面倾斜朝上和竖直向下流动沸腾时汽泡易于浮升。汽泡浮升后,其运动速度迅速增加。由于浮升汽泡处于过冷流体中,其界面上发生冷凝,导致汽泡界面形状变化较大。基于可视化实验结果,从受力角度分析不同流动方式和加热面放置方式对近壁汽泡滑移和浮升的影响。 The phenomenon on sliding and lift-off of bubbles in a narrow rectangular channel were observed through the top view and side view of the narrow rectangular channel using a high speed digital camera. In inclined upward facing upflow boiling and in vertical downflow boiling, the bubble tends to lift off from the surface. The bubble velocity increases after lift-off from the heating surface, and the condensation phenomenon of lift-off bubble will occur when the bulk flow is subcooling, which results in the change of bubble shape. Base on the experimental results, the effects of different flow mode and heating surface inclined mode on the sliding and lift-off of bubble are analyzed.
出处 《核动力工程》 EI CAS CSCD 北大核心 2013年第4期73-78,共6页 Nuclear Power Engineering
基金 国家自然科学基金资助项目(51106142)
关键词 滑移汽泡 浮升 界面形状 窄缝 Sliding bubble, Interface shape, Narrow channel
  • 相关文献

参考文献9

  • 1Gunther F C. Photographic Study of Surface-Boiling Heat Transfer to Water with Forced Convection [J]. Trans ASME Journal of Heat Transfer, 1951, 73: 115-124.
  • 2Cornwell K. The Influence of Bubbly Flow on Boiling from A Tube in A Bundle [J]. Int J Heat Mass Transfer, 1990, 33: 2579-2584.
  • 3Thomcrofi G E, Klausner J E The Influence of Vapor Bubble Sliding on Forced Convection Boiling Heat Transfer [J]. Journal of Heat Transfer, 1999, 121: 73-79.
  • 4Maity S. Effect of Velocity and Gravity on Bubble Dynamics [D]. Ms Thesis, University of California, Los Angeles, 2000.
  • 5徐建军,何军山,陈炳德,王小军.矩形窄缝流道内过冷沸腾汽泡行为的可视化[J].动力工程,2007,27(3):389-392. 被引量:5
  • 6徐建军,陈炳德,王小军.竖直矩形窄缝通道内近壁滑移汽泡运动特征研究[J].核动力工程,2011,32(2):59-62. 被引量:5
  • 7徐建军,陈炳德,王小军.竖直矩形窄缝通道内近壁汽泡生长和脱离研究[J].原子能科学技术,2010,44(11):1349-1354. 被引量:6
  • 8Tomio Okawa, Tatsuhiro Ishida, Michitsugu Mori et al. An Experimental Study on Bubble Rise Path after the Departure From A Nucleation Site in Vertical Upflow Boiling [J]. Experimental Thermal and Fluid Science 2005, 29: 287-294.
  • 9Rong Situ, Takashi Hibiki, Mamoru, et al. Bubble Lift-Off Size in Forced Convective Subcooled Boiling Flow [J]. International Journal of Heat and Mass Transfer, 2005, 48: 5536-5548.

二级参考文献25

  • 1王昊,柯道友,彭晓峰,王补宣.加热丝上过冷池沸腾汽泡射流现象及其模拟[J].中国科学(E辑),2005,35(5):503-522. 被引量:5
  • 2柯道友,王昊,彭晓峰.加热铂丝上运动汽泡产生的射流[J].工程热物理学报,2005,26(4):638-640. 被引量:5
  • 3徐建军,何军山,陈炳德,王小军.矩形窄缝流道内过冷沸腾汽泡行为的可视化[J].动力工程,2007,27(3):389-392. 被引量:5
  • 4KLAUSNER J F,MEI R,BERNHARD D M,et al.Vapor bubble departure in forced convection boiling[J].Int J Heat Transfer,1993,36(3):651-662.
  • 5ZHANG W,HIBIKI T,MISHIMA K.Correlation for flow boiling heat transfer in mini-channels[J].Int J Heat Mass Transfer,2004,47(26):5 749-5 763.
  • 6KANDIKAR S G.Fundamental issues related to flow boiling in minichannels and microchannels[J].Experimental Thermal and Fluid Science,2002,26(2-4):389-407.
  • 7徐建军.矩形窄缝通道内近壁滑移汽泡动力特性及其传热机理研究[D].成都:中国核动力研究设计院,2009.
  • 8ZENG L Z,KLAUSNER J F,BERNHARD D M,et al.A unified model for the prediction of bubble detachment diameters in boiling systems-Ⅱ:Flow boiling[J].Int J Heat Mass Transfer,1993,36(9):2 271-2 279.
  • 9THORNCROFT G E,KLAUSNER J F,MEI R.Bubble force and detachment models[J].Multiphase Science and Technology,2001,13(3-4):35-76.
  • 10WU W,CHEN P P,JONES B G,et al.A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows[J].Nuclear Engineering and Design,2008,238(10):2 693-2 698.

共引文献12

同被引文献19

  • 1HENRY R E, FAUSKE H K. External cooling of a reactor vessel under severe accident condi- tions [J]. Nuclear Engineering and Design, 1993, 139(1): 31-43.
  • 2CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. US: Argonne National Laboratory, 1995.
  • 3KIM S J, HU L W, McKRELL T, et al. Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure[J]. Journal of Heat Transfer, 2008, 130(4): 044501(3).
  • 4KIM S J, McKRELL T, BUONGIORNO J, et al. Experimental study of flow critical heat flux in alumina-water, zinc oxide-water, and diamond-water nanofluids[J]. Journal of Heat Transfer, 2009, 131(4).. 043204(7).
  • 5AHN H S, KIM H, JO H J, et al. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface[J]. International Journal of Multiphase Flow, 2010, 36(5) : 375-384.
  • 6VAFAEI S, WEN D. Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microehannel[J]. Journal of Heat Transfer, 2010, 132(10): 102-404.
  • 7XU L, XU J. Nanofluid stabilizes and enhances convective boiling heat transfer in a single micro- channel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21) : 5 673-5 686.
  • 8BUONGIORNO J, HU L W, HU A G, et al. A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in lightwater reactors[J]. Nuclear Engineering and Design, 2009, 239 (5): 941-948.
  • 9KOSHIZUKA S, OKAY. Moving-particle semiimplicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123(3): 421-434.
  • 10YOON H Y, KOSHIZUKA S, OKA Y. A mesh-free numerical method for direct simulation of gas-liquid phase interface[J]. Nuclear Science and Engineering, 1999, 133(2).. 192-200.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部