期刊文献+

希瓦氏奥奈达菌MR-1还原针铁矿的实验研究及地球化学意义 被引量:6

Reduction of Goethite by Shewanella Oneidensis MR-1 and Its Geochemical Implication
下载PDF
导出
摘要 本文实验研究了希瓦氏奥奈达菌株(Shewanella oneidensis MR-1,以下简称MR-1)在pH为中性的厌氧条件下还原针铁矿的过程,探讨了MR-1菌异化还原针铁矿的动力学特征。采用邻菲罗啉分光光度法检测了反应前后溶液中铁含量的变化,利用扫描电子显微镜、粉晶X射线衍射和激光拉曼光谱分析了针铁矿及其还原产物的形貌特征和物相组成。结果表明,针铁矿在厌氧条件下可被MR-1还原,生成磁铁矿、菱铁矿等次生矿物。本文认为针铁矿的微生物异化还原过程以直接接触机制为主,同时存在间接还原机制;溶液中的Fe2+与CO32-、SO42-等沉淀生成菱铁矿等次生产物,同时部分Fe2+、Fe3+离子可吸附于矿物表面,甚至能引起矿物相的转化,两者共同构成了针铁矿的次生分解路径。 Based on interaction experiments between Shewanella oneidensis strain MR-1(MR-1) and synthesized goethite,this paper studied the solubility and bioreduction process of goethite,as well as secondary minerals under circum neutral pH.O-Phenanthroline spectrophotometry was employed to analysis changes of soluble iron in solution;scanning electron microscope-energy dispersive spectrometer(SEM-EDS) was applied to investigate mineral surface morphology;X-ray diffraction(XRD) and laser Raman spectrometer were used to determine mineral phases of initial mineral and final products during the interaction period.Results indicate that goethite is bioreducible under anaerobic conditions by MR-1,with secondary mineralization accompanying reduction processes.We drew a conclusion that direct contact dominated and indirect reduction mechanism coexisted the course of goethite bioreduction,and direct secondary precipitation from solution.It is also found that ion adsorption on secondary products potentially induced further mineral transformation.
出处 《矿物学报》 CAS CSCD 北大核心 2013年第3期389-396,共8页 Acta Mineralogica Sinica
基金 国家自然科学基金(批准号:40930742 41272056 10979018) 科技部973课题(编号:2007CB815603)
关键词 SHEWANELLA oneidensis MR-1 针铁矿 次生矿化 还原机制 Shewanella oneidensis MR-1 goethite secondary mineralization reduction mechanism
  • 相关文献

参考文献57

  • 1Roden E E, Zachara J M. Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth [J]. Environmental Science and Technology, 1996, 30: 1618-1628.
  • 2Zachara J M, Fredrickson J K, Li S-M, et al. Bacterial reduction of crystalline Fe(III)oxides in single-phase suspensions and subsurface materials [J]. American Mineralogist, 1998, 83: 1426-1443.
  • 3Liu C, Kota S, Zachara J M, et al. Kinetic analysis of the bacterial reduction of goethite [J]. Environmental Science and Technology, 2001a, 35: 2482-2490.
  • 4Lovley D R. Dissimilatory Fe(III) and Mn(IV) reduction [J]. Microbiological Reviews, 1991, 55: 259-287.
  • 5Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration-environmental significance, physiology, and regulation [J]. Annual Review of Microbiology, 1994, 48: 311-343.
  • 6Baker B J, Banfield J F. Microbial communities in acid mine drainage [J]. FEMS Microbiological Ecology, 2003, 44: 139-152,.
  • 7Chaudhuri S K, Lack J C Coates J D. Biogenic magnetite formation through anaerobic biooxidation of Fe( II ) [J]. Applied and Environmental Microbiology, 2001, 67: 2844-2848.
  • 8Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis [J]. Nature, 2002, 416: 767-769.
  • 9Fredrickson J K, Zachara J M, Kennedy D W, et al. Biogenie iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium [J]. Geoehimica et Cosmochimica Acta, 1998, 62: 3239-3257.
  • 10Hansel C M, Benner S G, Neiss J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow [J]. Geochimica et Cosmochimica Acta, 2003, 67(16): 2977-2992.

二级参考文献156

共引文献125

同被引文献67

  • 1黄晓东,张金松,尤作亮,汪义强,刘丽君,齐玉玲,乔铁军,安娜.广东北江镉污染应急处理技术与工程实践[J].供水技术,2007,1(2):25-27. 被引量:19
  • 2鲁安怀.矿物与微生物协同作用[J].矿物学报,2012,32(S1):6-7. 被引量:3
  • 3徐亚同.不同碳源对生物反硝化的影响[J].环境科学,1994,15(2):29-32. 被引量:64
  • 4国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
  • 5Moreno B,Gómez M A,González-López J,et al.Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater:a comparative study[J].Journal of Hazardous Materials,2005,117(2):141-147.
  • 6Jeong J,Hidaka T,Tsuno H,et al.Development of biological filter as tertiary treatment for effective nitrogen removal:Biological filter for tertiary treatment[J].Water Research,2006,40(6):1127-1136.
  • 7Jokela J P Y,Kettunen R H,Sormunen K M,et al.Biological nitrogen removal from municipal landfill leachate:low-cost nitrification in biofilters and laboratory scale in-situ denitrification[J].Water Research,2002,36(16):4079-4087.
  • 8Aslan S,Cakici H.Biological denitrification of drinking water in a slow sand filter[J].Journal of Hazardous Materials,2007,148(1):253-258.
  • 9Lowe K L,Dichristina T J,Roychoudhury A N,et al.Microbiological and geochemical characterization of microbial Fe(Ⅲ)reduction in salt marsh sediments[J].Geomicrobiology Journal,2000,17(2):163-178.
  • 10Tan J,Wang J,Xue J,et al.Methane production and microbial community analysis in the goethite facilitated anaerobic reactors using algal biomass[J].Fuel,2015,145:196-201.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部