期刊文献+

混合椭球分布下证券组合的尾部条件方差

Tail Conditional Variance of Portfolio with Mixture of Elliptically Distributions
原文传递
导出
摘要 由于风险价值、条件风险价值等下方风险度量没有考虑尾部数据的变异性,因此在刻画极端金融风险方面存在一定的缺陷。为了更好地控制尾部极端损失的发生概率,我们选择用尾部条件方差来刻画这种极端风险,即超过风险价值的那部分损失的方差。考虑到混合椭球分布在金融数据建模中的重要性,本文在这类分布下研究了证券组合的尾部条件方差,得到了证券组合尾部条件方差风险的精确表达式,为了验证本文的结果,我们也进行了一些数值计算及在最优投资组合方面的应用研究。 Since downside risk measures such as VaR and CVaR have flaws in characterizing the variance of tail data and measuring extreme financial risk, the tail conditional variance, the variance of loss beyond VaR, motivated by tail conditional expectation is studied in this paper. The explicit solution of the tail conditional variance of portfolio under a mixture of multivariate elliptically distributions and an important heavy tail distribution in modeling financial data are obtained. Some numerical examples and empirical application on the optimal portfolio selection are finally provided to illustrate the proposed method. The results can help investors to better control extreme portfolio risk.
出处 《中国管理科学》 CSSCI 北大核心 2013年第4期17-26,共10页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(71101095) 广东省自然科学基金资助项目(2008276)
关键词 证券组合 风险度量 尾部条件方差 混合椭球分布 portfolio risk measure tail conditional variance mixture elliptically distribution
  • 相关文献

参考文献35

  • 1Markowitz H M. Portfolio selection [J]. Journal of Fi- nance, 1952, 7: 77-91.
  • 2Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking & Finance, 2002,26 (7): 1487-1503.
  • 3Tasche D. Expected shortfall and beyond [J]. Journal of Banking & Finance, 2002, 26(7): 1519-1533.
  • 4Yamai Y, Yoshiba T. Value-at-risk versus expected shortfall., a practical perspective[J]. Journal of Banking & Finance, 2005, 29(4): 997-1015.
  • 5Szego G. Measures of risk [J]. Journal of Banking & Fi- nance, 2002, 26(7):1253-1272.
  • 6Kibzun A I, Kuznestsov E A. Analysis of criteria VaR and CVaR[J]. Journal of Banking & Finance, 2006, 30 (2) : 779-796.
  • 7Artzner P, Delbaen F, Eber J M, et al. Coherent meas- ures of risk[J]. Mathematical Finance, 1999, 9: 203- 228.
  • 8Alexander S,Coleman T F, Li Y. Minimizing CVaR and VaR for a portfolio of derivatives[J]. Journal of Banking Finance, 2006, 30(2): 583-605.
  • 9Zhu Shushang, Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio man- agement[J]. Operations Research, 2009, 57(5): 1155 -1168.
  • 10Inui K, Kijima M. On the significance of expected shortfall as a coherent risk measure [J]. Journal of Banking & Finance, 2005, 29(4): 853-864.

二级参考文献63

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部