期刊文献+

利用热力学模型研究光伏—热电复合系统效率提升机制 被引量:4

Thermodynamic Analysis of the Efficiency Improvement of a Photovoltaic-thermoelectric Hybrid System
原文传递
导出
摘要 太阳能电池和热电模块组成的复合系统有望获得较高的太阳能到电能的转换效率。本文利用热力学方法分析了由商业化太阳能电池构成的复合系统,并根据一维模型下能流输运特性计算了系统内各模块温度及其对转换效率的影响,发现低温度系数和低效率的太阳能电池可以通过构建复合系统获得更大的性能提升。同时,由于太阳辐照的有限性导致流经热电模块的热流受到限制,因此热电模块效率无法达到理想条件下的最优值。这表明复合系统的优化并非各个模块优化后结果的简单线性叠加,而需要考虑构成复合系统的各个模块间的约束条件进行整体计算和优化,即复合系统效率不仅与材料本征特性(如电导率、热导率等)有关,也和其工作状态(如入射太阳辐照强度、热电模块构成及几何尺寸、模块之间热学特性等)有关。上述模型与结果对于类似复合系统的设计有着指导作用。 A hybrid system formed by a photovoltaic module and a thermoelectric module has a great potential to enhance the solar-to- electricity efficiency. A mathematical model based on the first law of thermodynamics and the heat transfer analyses of the hybrid system is built, where the overall efficiency of the system is enhanced by optimizing the system as a whole. The model is used to study hybrid systems formed by commercially available photovoltaic modules and thermoelectric modules. It is found that, due to a limited incoming heat flux for the thermoelectric module, the overall performance of the hybrid system depends not only on the intrinsic properties of the materials forming such a hybrid system, but also on their working conditions, such as incoming solar radiation, geometry of each module, and interracial properties. The results indicate that only photovoltaie modules with low temperature coefficient and low efficiency can truly benefit from forming such hybrid system, and the optimization of a hybrid system must be done as a whole.
出处 《科技导报》 CAS CSCD 北大核心 2013年第24期15-20,共6页 Science & Technology Review
基金 教育部高等学校博士学科点专项科研基金新教师项目(20090121120028) 教育部高等学校博士学科点专项科研基金博导类项目(20120121110021) 国家自然科学基金项目(U1232110)
关键词 光伏 热电 复合系统 能量转换效率 photovoltaic thermoelectric hybrid system energy conversion efficiency
  • 相关文献

参考文献5

二级参考文献35

  • 1[1]AGARWALI S K,MURALIDHARANI R,AGARWA-LAT A,et al.A new method for the measurement of series resistance of solar cells[J].Phys D:Appl Phys,1981,14:1643-1646.
  • 2[3]EL-ADAWI M K,AL-NUAIM I A.The temperature functional dependence of VOC for a solar cell in relation to its efficiency new appoach[J].Desalination,2007(209):91-96.
  • 3[5]SHARMAT S K,SAMUEL K B,SRINIVASAMURTHY N,et al.Overcoming the problems in determination of solar cell series resistance and diode factor[J].J Phys D:Appl Phys,1990,23:1256-1260.
  • 4[7]ARORA J D,VERMA A V,BHATNAGAR M.Variation of series resistance with temperature and illumination level in diffused junction poly-and single-crystalline silicon solar cells[J].Journal of Materials Science Letters,1986,5:1210-1212.
  • 5[8]SEWANG Y,GARBOUSHIAN V,AMONIX I,et al.Reduced temperature dependence of high-concentration photovoltaic solar cell open-circuit voltage(VOC) at high concentration levles[C]// Photovoltaic Energy Conversion 1994,Conference Record of the Twenty Fourth,IEEE Photovoltaic Specialists Conference-1994.Waikoloa HI USA:[s.n.],1994:1500-1504.
  • 6[9]ANTON I,SALA G,PACHON D.Correction of the VOC vs temperature dependence under non-uniform concentrated illumination[C]//17th EC Photovoltaic Solar Energy Conference.Munich (Germany):[s.n.],2001.
  • 7[10]MOSALAM SHALTOUT M A,EL-NICKLAWY M M,HASSAN A F,et al.The temperature dependence of the spectral and efficiency behavior of Si solar cell under low concentrated solar radiation[J].Reneaable Energy,2000(21):445-458.
  • 8Arora J D,Verma A V,Mala Bhatnagar.Variation of series resistance with temperature and illumination level in diffused junction poly-and single-crystalline silicon solar cells[J].J Mater Sci Lett,1986,5:1210-1212.
  • 9Deshmukh M P,Nagaraju J.Measurement of silicon and GaAs/Ge solar cell device parameters[J].Solar Energy Materials & Solar Cells,2005,89(4):403-408.
  • 10De Soto W,Klein S A,Beckman W A.Improvement and validation of a model for photovoltaic array performance[J].Solar Energy,2006,80:78-88.

共引文献66

同被引文献28

  • 1陈金灿,严子浚.半导体温差发电器性能的优化分析[J].Journal of Semiconductors,1994,15(2):123-129. 被引量:26
  • 2张建中.温差电致冷器的可靠性研究[J].电源技术,1995,19(5):39-44. 被引量:4
  • 3罗斌,代彦军.太阳能半导体冰箱的性能分析[J].制冷学报,2006,27(5):7-10. 被引量:14
  • 4李晶,窦伟,徐正国,彭燕昌,许洪华.光伏发电系统中最大功率点跟踪算法的研究[J].太阳能学报,2007,28(3):268-273. 被引量:153
  • 5LaGrandeur J, Crane D, Hung S, et al. Automotive waste heat conversion to electric power using skutteru- dite, TAGS, PbTe and BiTe [C]. Thermoelectrics, 2006. ICT'06. 25th International Conference on. IEEE, 2006 : 343-348.
  • 6Ota T, Tokunaga C, Fujita K. Development of thermo- electric power generation system for industrial furnaces [C] . Thermoelectries, 2005. ICT 2005. 24th Interna- tional Conference on. IEEE, 2005: 335-338.
  • 7Kishi M, Nemoto H, Hamao T, et al. Micro thermoelec- tric modules and their application to wristwatches as an energy source [C]. Thermoelectrics, 1999. Eighteenth International Conference on. IEEE, 1999 : 301-307.
  • 8Solar Day 2010' s Worldwide Solar Mission [EB/OL] . (2010-0511) . http : //www.solardaily.com/reports/So- larDay_2010s_Worldwide_Solar_Mission_999.html.
  • 9Amatya R, Ram R J. Solar thermoelectric generator for micropower applications [J] . Journal of electronic mate- rials, 2010, 39 (9): 1735-1740.
  • 10Moghaddas M H, Cobble M H. Experimental and theoret- ical analysis of a thermoelectricgenerator [A] . The 1^st European Conference on Thermoelectrics [C] . Rowe DM , London : Peter Peregrinus Ltd , 1985 : 370- 377.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部