摘要
Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,
Seasonally cold climate and resulting frost action set great demands to railway track substructure in order to maintain Irack geomelry. Chal- lenges culminate on high-speed lines, where the tolerances for roughness are the tightest. Problems may result in highly increased Irack maintenance and need for temporary speed reslrictions. The causes of frost action can be associated with subsoil, subballast or ballast. The major concern in frost protection is to avoid the freezing of frost susceptible subsoil by using sufficient thickness of subballast and relying on non-fi'ost-susctible subballast material. This paper provides an overview of the main research findings on the role of ballast, subballast and subsoil in frost acedon. In new comlruclion the material specificalions, design procedures and construction methods have been developed to ensure adequate performance of Irack subscatt, but special challenges exist in managing existing Wacks that were not designed for modem requirements. In order to perform cost-effective and sustainable track maintenance, it is necessary to recognize the problem areas and define the root-causes of problems. For locating the problem sections and defining the causes of defects, a sophisticated analysis based on integration of track geometry and ground penetrating radar (GPR) data has been developed and is summarized in this paper,
基金
Finnish Transport Agency for enabling the research