摘要
The goal of a predictive thermotechnical calculation is to model the behavior of the top permafrost boundary under current operational conditions as well as increasing average annual air temperatures that results in degradation of the permafrost layer. Numerical modeling was used to assess the efficient application of construction measures to create sustainable operation of the railroad. The numerical modeling was carried out in the programming complex FEM-models developed by geotechnical engineers of St. Petersburg, Russia under Prof. V. M. Ulitsky's guidance. The Termoground Program as a part of the FEM-models enables the research of freezing, heaving and thawing in different design solutions. Research was carried out in space resolution for a year cycle. The performed model has shown that the designing measures accepted for permafrost protection from retreat in the subrade support were generally effective.
The goal of a predictive thermotechnical calculation is to model the behavior of the top permafrost boundary under current operational conditions as well as increasing average annual air temperatures that results in degradation of the permafrost layer. Numerical modeling was used to assess the efficient application of construction measures to create sustainable operation of the railroad. The numerical modeling was carried out in the programming complex FEM-models developed by geotechnical engineers of St. Petersburg, Russia under Prof. V. M. Ulitsky's guidance. The Termoground Program as a part of the FEM-models enables the research of freezing, heaving and thawing in different design solutions. Research was carried out in space resolution for a year cycle. The performed model has shown that the designing measures accepted for permafrost protection from retreat in the subrade support were generally effective.