期刊文献+

基于域理论的自适应谐振神经网络研究 被引量:2

Research of Field Theory Based Adaptive Resonance Neural Network
下载PDF
导出
摘要 提出了一种基于域理论的自适应谐振神经网络算法 FTART,有机结合了自适应谐振理论和域理论的优势 ,以一种独特的方式解决了示例间冲突和分类区域的动态扩展 ,不仅不需要手工设置隐层神经元 ,可以还获得了较快的训练速度和较高的预测精度 .同时还提出了一种可以从训练好的 FTART网络中抽取可理解性好、精度高的符号规则的方法 ,即基于统计的产生测试法 .实验结果表明 。 In this paper, a Field Theory based adaptive resonance neural network algorithm FTART, which combines the advantages of Adaptive Resonance Theory and Field Theory, is proposed. FTART employs a unique approach to solve the conflicts between instances and extend classification regions dynamically. So that it does not need user to manually configure hidden units, and achieves fast training speed and high predictive accuracy. Moreover, a method named Statistic based Producing and Testing, which has the ability of extracting comprehensive and accurate symbolic rules from trained FTART, is proposed. Experimental results show that the symbolic rules extracted via this method can commendably describe the function of FTART.
出处 《软件学报》 EI CSCD 北大核心 2000年第11期1451-1459,共9页 Journal of Software
基金 国家自然科学基金No.69875006 江苏省自然科学基金No.BK99036
关键词 神经网络 机器学习 规则抽取 自适应谐振理论 域理论 知识获取 在线学习 增量学习 neural networks machine learning rule extraction adaptive resonance theory field theory knowledge acquisition online learning incremental learning
  • 相关文献

参考文献3

二级参考文献2

共引文献12

同被引文献17

  • 1宣士斌 冯嘉礼.行为属性决定的事物间关系及其属性坐标表示法[J].南京大学学报(自然科学)(计算机专辑),2000,36:8-13.
  • 2Roush s slack F J. The let-7 family of trticr0RNRs[J]. Trends Cell Biol;2008,18(10):505-516.
  • 3Doran J,Strauss W M. Bio-informatic trends for the determirlatidfi Of miRNA-target interactions in mammals [J]. DNA Cell Biol,2007,26(5):353-360.
  • 4Rojas A, Padidam M,Cress D, et al. TGF-13 receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β[J]. Bioehim Biophys Acta, 2009,1793 (7) : 1165-1173.
  • 5Kathleen C, Lalae M. Transforming growth factor-βs and mammary gland involution; functional roles and implications for cancer progression[J]. J Mammary Gland Biol Neoplasia, 2009,14(2) : 131-144.
  • 6Greene R L.Efficient Retrieval from Sparse Associative Memory[J].Artifficial Intelligence,1994,66:395-410.
  • 7Omori T,Mochizuki T,et al.Emergence of Sysbolic Behavior from Like Memory with Dynamic Attention[J].Neural Networks,1999,(12):1157-1172.
  • 8Murdock Jr B B.TODAM2:A Model for the Storage and Retrieval of Item,Associative and Serialorder Information[J].Psychological Review,1993,100(2):183-203.
  • 9Tru H Cao.A Formalism for Representing and Reasoning with Linguistic Information[J].International Journal of Uncertainty,Fuzziness and Knowledge-based Systems,2002,10(3):281-307.
  • 10Baader F,et al.The Description Logic Handbook:Theory,Implementation and Applications[M].Cambridge: Cambridge University Press,2002.29-83.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部