期刊文献+

随机约束满足问题的回溯算法分析 被引量:8

An Average Time Analysis of Backtracking on Random Constraint Satisfaction Problems
下载PDF
导出
摘要 提出一种新的随机 CSP( constraintsatisfaction problem)模型 ,并且通过研究搜索树的平均节点数 ,分析了回溯算法求解该模型的平均复杂性 .结果表明 ,这种模型能够生成难解的 CSP实例 ,找到所有的解或证明无解所需的平均节点数即随变量数的增加而指数增长 .因此 ,该模型可以用来研究难解实例的性质和 CSP算法的性能等问题 ,从而有助于设计出更为高效的算法 . A new random CSP (constraint satisfaction problem) model is proposed in this paper. By analyzing the expected number of nodes in a search tree, the average running time used by the backtracking algorithm on random constraint satisfaction problems is studied. The results show that the model can generate hard CSP instances, and the expected number of nodes required for finding all solutions or proving that no solution exists becomes exponentially large as the number of variables grows. Therefore, the model can be used to analyze the nature of hard instances and evaluate the performance of CSP algorithms, and hence it helps the researchers to design more efficient algorithms.
作者 许可 李未
出处 《软件学报》 EI CSCD 北大核心 2000年第11期1467-1471,共5页 Journal of Software
基金 国家重点基础研究发展规划资助项目(G1999032701) 教育部博士点基金资助项目(1999000613)
关键词 算法分析 平均复杂性 回溯算法 约束满足 analysis of algorithm average complexity backtracking algorithm constraint satisfaction
  • 相关文献

参考文献8

  • 1[1] Dechter, R. Constraint satisfaction. In: The MIT Encyclopedia of th e Cognitive Sciences (MITECS). 1998. ftp://ftp.ics.uci.edu/pub/CSP-repository/p apers/R68.ps.
  • 2[2] Borow, D.G., Brady, M. Special volume on frontiers in problem solving: ph ase transitions and complexity. Artificial Intelligence, 1996,81(1~2):1~15.
  • 3[3] Smith, B.M., Dyer, M.E. Locating the phase transition in binary constrain t satisfaction problems. Artificial Intelligence, 1996,81(1~2):155~181.
  • 4[4] Frost, D. Algorithms and heuristics for constraint satisfaction problems [Ph.D. Thesis]. University of California, Irvine, 1997. ftp://ftp.ics.uci.edu/ pub/CSP-repository/papers/R69.ps.
  • 5[5] Kondrak, G., Beek, P.V. A theoretical valuation of selected algorithms. A rtificial Intelligence, 1997,89(1~2):365~387.
  • 6[6] Prosser, P. An empirical study of phase transitions in binary constraint satisfaction problems. Artificial Intelligence, 1996,81(1~2):81~109.
  • 7[7] Purdom, P.W. Backtracking and random constraint satisfaction. Annals of M athematics and Artificial Intelligence, 1997,20(1~4):393~410.
  • 8[8] Purdom, P.W, Brown, C.A. An average time analysis of backtracking. SIAM J ournal on Computing, 1981,10(3):583~593.

同被引文献54

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部