期刊文献+

锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4的制备及性能研究 被引量:4

Synthesis and electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode materials for lithium-ion batteries
下载PDF
导出
摘要 以Li(CH3COO).2H2O、Ni(CH3COO)2.4H2O、Mn(CH3COO)2.4H2O和H2C2O4.2H2O为原料,聚乙二醇20000为分散剂,采用化学合成法制备了具有立方尖晶石结构的锂离子电池正极材料LiNi0.5Mn1.5O4。通过XRD、SEM和充放电测试对样品进行表征。850℃下焙烧制备的LiNi0.5Mn1.5O4样品电化学性能最佳,在3.5~4.9V电压范围内以0.2、0.5、1、2和5C充放电,其首次放电比容量分别为132.9、117.3、111.2、104.8和91mAh/g,20次循环后容量保持率分别为93.2%、98.9%、97.4%、97.3%和95.5%。 The lithium-ion battery cathode material LiNi0.5Mn1.5O4 with cubic spinel structure were synthesized by a chemical route using Li(CH3COO).2H2O,Ni(CH3COO)2.4H2O,Mn(CH3COO)2.4H2O and H2C2O4.2H2O as raw materials,and polyethylene glycol 20000as dispersant.The evaluation of the synthesized samples were carried out by using X-ray diffraction,scanning electron microscopy and charge-discharge tests.When calcinated at 850℃,the LiNi0.5Mn1.5O4samples show the best electrochemical performance.The specific discharge capacities were 132.9,117.3,111.2,104.8and 91mAh/g at 0.2,0.5,1,2,5C(1C=146.7mAh/g)rates in the range of 3.5-4.9V,and after 20cycles the capacity retention are 93.2%,98.9%,97.4%,97.3%,95.5%,respectively.
出处 《功能材料》 EI CAS CSCD 北大核心 2013年第11期1562-1565,1569,共5页 Journal of Functional Materials
基金 云南省自然科学基金资助项目(2009CD024)
关键词 锂离子电池 正极材料 LINI0 5Mn1 5O4 倍率性能 循环性能 lithium ion battery cathode material LiNi0.5Mn1.5O4 rate capability cycle performance
  • 相关文献

参考文献23

  • 1张凤敏,李宁,黎德育,张翠芬.锂离子电池正极材料研究现状[J].电池,2003,33(6):392-394. 被引量:20
  • 2Babu B R, Periasamy P, Thirunakaran R, et al. Solid-state synthesis and characterization of LiNiy Col-y Oz (0.0 .y 0.4) [J]. International Journal of Inorganic Materials, 2001,3(4-5) :401-407.
  • 3刘景,温兆银,吴梅梅,樊增钊,林祖纕.锂离子电池正极材料的研究进展[J].无机材料学报,2002,17(1):1-9. 被引量:49
  • 4Ohzuku T, Takeda S,Iwanaga M,et al. Solid-state redox potentials for Li [ Me1/2 Mn3/2 ] 04 ( Me : 3d-transition met- al) having spinel-framework structures:a series of 5 volt materials for advanced lithium-ion batteries[J]. Journal of Power Sources, 1999, (81/82) : 90-94.
  • 5周艺峰,聂王焰,陈春华,水江澜.锂离子电池正极材料LiMn_2O_4的改性研究[J].功能材料,2006,37(9):1381-1385. 被引量:15
  • 6李洪桂,李运姣,孙培梅,赵中伟,霍广生,孙召明.LiMn_2O_4纳米粉的湿化学合成与表征[J].功能材料,2002,33(5):511-512. 被引量:3
  • 7Arunkumar T A, Manthiram A, et al. Influence of chromi- um doping on the electrochemical performance of the 5V spinel cathode LiMnl. s Ni0.5 04[J]. Electrochimica Acta , 2005,50 (28) : 5568-5572.
  • 8Zhong Q, Bonakdarpour A,Zhang M, et al. Synthesis andelectrochemistry of LiNi Mn2 x 04 [ J ]. J Electroehem Soe,1997,144(1) :205-213.
  • 9Arrebola J C, Caballero A, Hernan L, et al. Expanding the rate capabilities of the LiNi0. s Mnl. s 04 spinel by exploiting the synergistic effect between nano and microparticles[J]. Eleetroehem Solid-State Lett, 2005,8 (12) : A64 l-A645.
  • 10Wu X L, Kim S B. Improvement of electrochemical properties of LiNi0. s Mn .s O spinel[J] Journal of Pow- er Sources, 2002,109(1) : 53-57.

二级参考文献52

  • 1倪江锋,苏光耀,周恒辉,陈继涛.锂离子电池正极材料LiMPO_4的研究进展[J].化学进展,2004,16(4):554-560. 被引量:46
  • 2唐致远,阮艳莉.锂离子电池容量衰减机理的研究进展[J].化学进展,2005,17(1):1-7. 被引量:53
  • 3Sigala C, Guyomard D, Verbaere A, et al. Solid State Ionics, 1995,81(3-4):167-170.
  • 4Kawai H, Nagata M, Tukamoto H, et al. J. Mater. Chem., 1998,8(4):837-839.
  • 5Ohzuku T, Takeda S, Iwanaga M. J. Power Sources, 1999,81-82:90-94.
  • 6Zhong Q, Bonakdarpour A, Zhang M, et al. J. Electrochem.Soc., 1997,144(1):205-213.
  • 7Ein-Eli Y, Howard W F Jr. J. Electrochem. Soc., 1997,144(8):L205-L207.
  • 8Wu X, Kim S B. J. Power Sources, 2002,109(1):53-57.
  • 9Nakamura T, Kajiyama A. Solid State Ionics, 1999,124(1-2): 45-52.
  • 10Alcantara R, Jaraba M, Lavela P, et al. Electrochim. Acta,2002,47(11): 1829- 1835.

共引文献96

同被引文献24

  • 1黄冬玲,沈一丁.新型陶瓷用高分子分散剂的制备及结构与性能研究[J].陶瓷学报,2006,27(1):58-62. 被引量:8
  • 2方海升,王志兴,李新海,郭华军,彭文杰.LiNi_(0.5)Mn_(1.5)O_4的合成及性能[J].电池工业,2006,11(3):182-184. 被引量:2
  • 3ZHONG Q M, BONAKDARPOUR A, ZHANG M J, et al. Synthesis and electrochemistry of LiNiMn2_xO[J]. Journal of the Electrochemical Society, 1997, 144(1): 205-213.
  • 4DUNCAN H, DUGUAY D, ABU-LEBDEH Y, et al. Study of the LiMn.sNiosOJelectrolyte interface at room temperature and 60C[J]. Journal of the Electrochemical Society, 2011, 158(5): 537-545.
  • 5LEE Y S, SUN Y K, OTA S, et al. Preparation and characterization of nano-crystalline LiNiosMnl.sO for 5V cathode material by composite carbonate process[J]. Electrochem. Commun., 2002, 4(12): 989-994.
  • 6LI D, ITO A, KOBAYAKAWA K, et al. Electrochemical characteristics of LiNi0.Mnl.sO prepared by spray drying and post-annealing[J]. Electrochimica Acta, 2007, 52(5): 1919-1924.
  • 7JIN YC, DUH JG. Nanostructured LiNiosMnl.504 cathode material synthesized by polymer-as co-precipitation method with the improved rate capability[J]. Materials Letters, 2013, 93: 77-80.
  • 8JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4V Li/LixMn20, cells[J]. J Electrochem. Soc., 1996, 143(7): 2204-2211.
  • 9YI T F, ZHU Y R, ZHU R S. Density functional theory study of lithium intercalation for 5V LiNi0.sMnlsO, cathode materials[J]. Solid State Ionics, 2008, 179(38): 2132-2136.
  • 10SANTHANAM R, RAMBABU B. Research progress in high voltage spinel LiNi0.sMnl.sO4 material[J]. Power Sources, 2010, 195(17): 5442-5451.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部