期刊文献+

一种半监督联合模型下的异常流量检测算法 被引量:2

Network Traffic Anomaly Detection Based on Semi-supervised Combination Model
下载PDF
导出
摘要 网络异常通常表现在多维特征中,而当前检测方法局限于一维特征或者多维特征的简单组合,使系统检测率低、误报率高.同时,有监督学习需要大量训练数据,而无监督学习准确率不足.因此,本文提出半监督联合模型(Semi-Supervised Com-bination,SM C)对数据的多维特征进行检测,通过解决非线性优化问题使联合过程信息损失最小化,较好地处理了噪声与孤立点.半监督学习方式利用少量已标记数据使模型更准确.本文以模糊C均值聚类(Fuzzy C-Means,FCM)作为基本检测器,经过实验验证,在目标误报率下基于SMC模型的异常检测算法的准确率比单个基本检测器提高了10%到20%. Traffic anomaly is characterized by multiple features, but the existing detection methods block its application wide for low detection rate and high false alarm rate, which is aiming at features of a single dimension or multiple dimensions mixed simply. Con- sidering the insufficient of training records of supervised methods and low detection rate of unsupervised methods, a novel model is proposed, named Semi-Supervised Combination (SMC). It fuses multiple features of traffic to decide whether the network is normal, minimizes the information loss by solving nonlinear optimization problems and deals well with noise and isolated points. Semi-super- vised method exploits labeled data to improve the precision of the model. This paper uses fuzzy C-means as base detectors, and the experimental results show that the algorithm based SMC improves over the base detectors by 10% to 20% in accuracy.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第6期1242-1247,共6页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划项目(2009AA01A346)资助
关键词 异常检测 多维特征 半监督联合 非线性优化 模糊C均值聚类 anomaly detection multiple features semi-supervised combination nonlinear optimization Fuzzy C-Means
  • 相关文献

参考文献14

  • 1Corona I, Giacinto G, Roli F. Intrusion detection in computer sys- tems using multiple classifier systems [ M ]. Supervised and Unsu- pervised Ensemble Methods and Their Applications, Springer, 2008,126:91-114.
  • 2Lakhina A,Crovella M,Diot C. Mining anomalies using traffic fea- ture distdbutions[ C ]. In Proc of Sigcomm,August,2005:217-228.
  • 3李文华.基于聚类分析的网络入侵检测模型[J].计算机工程,2011,37(17):96-98. 被引量:12
  • 4Nychis G, Sekar V, Andersen D G, et al. An empirical evaluation of entropy-based anomaly detection [ C ]. In Proceedings of IMC, 2008.
  • 5Bertsekas D P. Non-linear programming [ M ]. Athena Scientific, 1999.
  • 6Barford P, Kline J, Plonka D, et al. A signal analysis of network traffic anomalies[ C]. In Proc of ACM SIGCOMM Interact Meas- urement Workshop, Marseilles, France, November, 2002.
  • 7Seni G,Elder F. Ensemble methods in data mining:improving accu- racy through combining predictions[ C ]. Morgan & Claypool,2010.
  • 8罗军生,李永忠,杜晓.基于模糊C-均值聚类算法的入侵检测[J].计算机技术与发展,2008,18(1):178-180. 被引量:21
  • 9Gao J,Liang F,Fan W,et al. Graph-based consensus maximization among multiple supervised and unsupervised models [ C ]. In Proc of NIPS ,2009.
  • 10Zhu Xiao-jin. Semi-supervised learning tutorial[ D ]. Department of Computer Sciences University of Wisconsin, Madison, USA, IC- ML, 2007.

二级参考文献10

  • 1Portnoy L, Eskin E, Stolfo S J. Intrusion Detection with Unlabeled Data Using Clustering[C]//Proc. of ACM CSS Workshop on Data Mining Applied to Security. Philadelphia, USA: ACM Press, 2001.
  • 2Mukkamala S, Janoski G, Sung A H. Intrusion Detection Using Neural Networks and Support Vector[C]//Proc. of IEEE Int’l Joint Conference on Neural Networks. Honolulu, Hawaii, USA: [s. n.], 2002.
  • 3MIT Lincoln Lab.. KDDCUP99 Dataset[DB/OL]. [2010-05-11]. http://kdd.ics.uci.edu/databases/kddcup99.
  • 4Han Jiawei,Kamber M. Data Mining Concepts and Techniques [M]. [s. l. ] :Morgan Kaufman,2001.
  • 5KDD99. KDD99 cup dataset[DB/OL]. 1999. http://kdd. ics. uci. edu/databases/kddcup99.
  • 6Pal N R, Bezdek J C. On clustering for the fuzzy c - means model[J]. IEEE Trans FS,1995,3(3) :370 - 379.
  • 7任晓东,张永奎,薛晓飞.基于K-Modes聚类的自适应话题追踪技术[J].计算机工程,2009,35(9):222-224. 被引量:13
  • 8吴静,刘衍珩,吕荣.基于FCM的分布式学习方法[J].吉林大学学报(工学版),2010,40(1):171-175. 被引量:2
  • 9罗敏,王丽娜,张焕国.基于无监督聚类的入侵检测方法[J].电子学报,2003,31(11):1713-1716. 被引量:64
  • 10罗静,董晟,华鹏.一种基于克隆的模糊C-均值入侵检测方法[J].微机发展,2004,14(3):107-109. 被引量:2

共引文献31

同被引文献23

引证文献2

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部