期刊文献+

一种改进的谱聚类彩色图像分割方法 被引量:3

A Color Image Segmentation Approach Based on Improved Spectral Clustering
下载PDF
导出
摘要 提出一种改进的基于谱聚类的彩色图像分割方法,首先引入Levin's Affinity的权函数代替传统的高斯核函数建立相似矩阵来构造带权无向图,从而更精细地刻画出数据间的特征相似性;其次,采用线性映射将图嵌入到一个由部分特征向量生成的子空间中,使得数据映射到新的空间后也能较好的保留其在原空间中的结构;最后,在生成的子空间中用K均值聚类算法进行聚类从而为每个像素点分配类标签达到彩色图像分割的目的.与相关谱聚类算法进行图像分割的结果比较证实了改进算法的有效性和显著性. A color image segmentation approach based on improved spectral clustering is proposed. First, the weighted function of a weighted undirected graph is defined by Levin's Affinity which can better capture the feature similarity between data than the tradition- al Ganssian kernel function. Secondly, the graph can be embedded into a subspace that contains a part of eigenvectors through liner mapping, which keeps the structure in the original space successfully when the data is mapped into a new space. Finally, K-means clustering algorithm is used in the subspace to distribute labels for each pixel and achieve the segmentation of color images. The ex- periment results that compared with the related spectral clustering algorithms are provided to show the effectiveness and significance of the improved algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第6期1413-1416,共4页 Journal of Chinese Computer Systems
基金 江苏省自然科学基金项目(BK2011794)资助
关键词 谱聚类 相似矩阵 权函数 线性映射 彩色图像分割 spectral clustering affinity matrix weighted function linear mapping color image segmentation
  • 相关文献

参考文献2

二级参考文献29

  • 1Wang J, Cohen MF. Optimized color sampling for robust matting. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Minneapolis, 2007. http://ieeexplore.ieee.org/searctVwrapper.jsp?arnumber=4270031.
  • 2Chuang YY, Curless B, Salesin DH, Szeliski R. A Bayesian approach to digital matting. In: Jacobs A, Baldwin T, eds. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2001. 264-271.
  • 3Lin SY, Pan RF, Du H, Shi JY. A survey on digital matting. Journal of Computer--Aided Design & Computer Graphics, 2007,19(4):473--479 (in Chinese with English abstract).
  • 4Wang J, Cohen MF. An iterative optimization approach for unified image segmentation and matting. In: Ma SD, Shum HY, eds. Proc. of the IEEE lnt'! Conf. on Computer Vision. New York: IEEE Computer Society Press, 2005. 936-943.
  • 5Guan Y, Chen W, Liang X, Ding ZG, Peng QS. Easy matting--A stroke based approach for continuous image matting. Computer Graphics Forum, Eurographics, 2006,25(3):567-576.
  • 6Sun J, Jia JY, Tang CK, Shum HY. Poisson matting. ACM Trans. on Graphics, 2004,23(3):315-321.
  • 7Grady L, Schiwietz T, Aharon S, Westermann R. Random walks for interactive alpha-matting. In: Villanueva JJ, ed. Proc. of the 5th IASTED Int'l Conf. on Visualization, Imaging and Image Processing. Benidorm: ACTA Press, 2005.423--429.
  • 8Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting, ln: Fitzgibbon A, Taylor C, LeCun Y, eds. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006. 61-68.
  • 9Levin A, Alex RA, Lischinski D. Spectral matting. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition.Minneapolis, 2007. http://people.csail.mit.edu/alevin/papers/spectral-matting-levin-etal-cvpr07.pdf.
  • 10Bai X, Sapiro G. A geodesic framework for fast interactive image and video segmentation and matting. In: Proc. of the 11th IEEE Int'l Conf. on Computer Vision. Rio de Janeiro, 2007. http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=4408931.

共引文献22

同被引文献38

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部