期刊文献+

Reverse Bonnesen style inequalities in a surface X_∈~2 of constant curvature 被引量:7

Reverse Bonnesen style inequalities in a surface X_∈~2 of constant curvature
原文传递
导出
摘要 We investigate the isoperimetric deficit upper bound, that is, the reverse Bonnesen style inequality for the convex domain in a surface X2 of constant curvature ε via the containment measure of a convex domain to contain another convex domain in integral geometry. We obtain some reverse Bonnesen style inequalities that extend the known Bottema's result in the Euclidean plane E2. We investigate the isoperimetric deficit upper bound, that is, the reverse Bonnesen style inequality for the convex domain in a surface X2∈ of constant curvature via the containment measure of a convex domain to contain another convex domain in integral geometry. We obtain some reverse Bonnesen style inequalities that extend the known Bottema's result in the Euclidean plane IE2.
出处 《Science China Mathematics》 SCIE 2013年第6期1145-1154,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.10971167, 11271302 and 11101336)
关键词 isoperimetric deficit surface of constant curvature Bonnesen style inequality reverse Bonnesenstyle inequality containment measure 常曲率 风格 反向 表面 积分几何 欧几里德 凸域 平面
  • 相关文献

参考文献2

二级参考文献3

  • 1LI Ming & ZHOU JiaZu School of Mathematics and Statistics,Southwest University,Chongqing 400715,China.An isoperimetric deficit upper bound of the convex domain in a surface of constant curvature[J].Science China Mathematics,2010,53(8):1941-1946. 被引量:17
  • 2Peter Li,Shing-Tung Yau.A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[J].Inventiones Mathematicae.1982(2)
  • 3H. hadwiger.überdeckung ebener Bereiche durch Kreise und Quadrate[J].Commentarii Mathematici Helvetici.1940(1)

共引文献24

同被引文献8

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部