期刊文献+

Ergodicity of stochastic Boussinesq equations driven by Lvy processes

Ergodicity of stochastic Boussinesq equations driven by Lvy processes
原文传递
导出
摘要 We consider a class of stochastic Boussinesq equations driven by L6vy processes and establish the uniqueness of its invariant measure. The proof is based on the progressive stopping time technique. We consider a class of stochastic Boussinesq equations driven by Lvy processes and establish the uniqueness of its invariant measure. The proof is based on the progressive stopping time technique.
出处 《Science China Mathematics》 SCIE 2013年第6期1195-1212,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos.10971225 and 11101427) Natural Science Foundation of Hunan Province (Grant No. 11JJ3004) the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State the Ministry of Education of China
关键词 Boussinesq equations Levy process invariant measure ERGODICITY Boussinesq方程 过程驱动 随机 遍历性 不变测度 停止时间
  • 相关文献

参考文献1

二级参考文献16

  • 1Erika Hausenblas.SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results[J]. Probability Theory and Related Fields . 2007 (1-2)
  • 2Sergei B. Kuksin.The Eulerian Limit for 2D Statistical Hydrodynamics[J]. Journal of Statistical Physics . 2004 (1-2)
  • 3Franco Flandoli.Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Nonlinear Differential Equations and Applications NoDEA . 1994 (4)
  • 4Hausenblas E.SPDEs driven by Poisson random measure with non Lipschitz coe cients: existence results. Probability Theory and Related Fields . 2007
  • 5Robinson J C.Infinite-dimensional dynamical systems: an introduction to dissipative parabolic PDEs and the theory of global attractors. . 2001
  • 6Roger Temam.Navier-Stokes Equations and Nonlinear Functional Analysis. . 1995
  • 7Teman R.Infinite-dimensional dynamical systems in mechanics and physics,2nd ed. . 1997
  • 8Da,Prato,G.,Zabczyk,J. Stochastic Equations in Infinite Dimensions . 1992
  • 9Da Prato,G.,Zabczyk,J.Ergodicity for infinite dimensional systems. London Mathematical Society. Lecture Notes Series, vol. 229 . 1996
  • 10Flandoli,F.Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA Nonlinear Differential Equations and Applications . 1994

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部