期刊文献+

Evolving Network Model with Local-Area Preference for Mobile Ad Hoc Network 被引量:2

基于局域偏好的移动自组织网络演进模型(英文)
下载PDF
导出
摘要 To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs. To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.
出处 《China Communications》 SCIE CSCD 2013年第5期146-155,共10页 中国通信(英文版)
基金 supported by National Science and Technology Major Project under Grant No. 2012ZX03004001 the National Natural Science Foundation of China under Grant No. 60971083
关键词 MANET evolving model complex network local-area preference remaining energy 网络模型 移动Ad 偏好 移动自组网 局域 容错性能 拓扑模型 演化模型
  • 相关文献

参考文献8

二级参考文献58

  • 1李国庆,安建平,杨杰.深入理解网络体系结构[J].计算机工程,2004,30(21):1-2. 被引量:4
  • 2汪泉弟,李彬,刘青松.无线传感器网络能量多路径路由研究[J].信息与控制,2006,35(2):129-134. 被引量:13
  • 3黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 4Albert R, Jeong H, Barabasi A L.Diameter of the Wodd-Wide Web[Jl. Nature, 1999, 401: 130-131.
  • 5Barabasi A L, Bonabeau E. Scale-free networks[J]. Scientific American, May 2003, 50-59.
  • 6Barabasi A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.
  • 7Govindan R, Tangmunanmkit H. Heuristics for Internet Map Discovery[ C]. Proceedings of IEEE INFOCOM 2000, Tel Aviv, Israel(IEEE, Piscataway, N. J. ), 2000, 3. 1371-1380.
  • 8Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.
  • 9Barabasi A L, Jeonga H, Neda Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A, 2002, 311:590-614.
  • 10Aiello W, Chung F, Lu L. A Random Graph Model for Massive Graphs[Cl. Proceedings of the 32nd ACM Symposium on the Theory of Computing (ACM, NewYork), 2000. 171-180.

共引文献57

同被引文献20

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2GONZALEZ M C, HIDALGO C A, BARABASI A L. Understanding individual human mobility patterns [ J ]. Nature, 2008, 453(5): 779-782.
  • 3EAGLE N, PENTLAND A S. Eigenbehaviors: Identifying structure in routine [ J ]. Behavioral Ecology and Sociobiology, 2009, 63(7): 1057-1066.
  • 4BU Zhan, XIA Zhengyou, WANG Jiandong. A sock puppet detection algorithm on virtual spaces [ J ]. Knowledge-based Systems, 2013, 37: 366-377.
  • 5AMBARTSUMYAN A A. Network-centric control based on Petri nets in the structured discrete-event system[ J]. Automation and Remote Control, 2012, 73 (7) : 1227- 1241.
  • 6NIKOLAEV A G, JACOBSON S H, TAM-CHO W K, et al. Balance optimization subset selection (boss): an alternative approach for causal inference with observational data [ J ]. Operations Research, 2013, 61(2) :398-412.
  • 7LI Jianfeng, FREIREICH B J, WASSGREN C R, et al. Experimental validation of a 2- D population balance model for spray coating processes [ J ]. Chemical Engineering Science, 2013, 95:360-365.
  • 8郭永红.基于贪婪追踪的压缩感知重建算法研究[D].成都:电子科技大学,2012.
  • 9WANG Chifeng, HU Wen-Hsiang, BAGHERZADEH N. Scalable load balancing congestion-aware Network-on- Chip router architecture [ J ]. Journal of Computer and System Sciences, 2013, 79(4) :421-439.
  • 10PITKANEN M, KARKKAINEN T, OYY J. SCAMPI: service platform for social aware mobile and pervasive computing [ J ]. Computer Communication Review, 2012, 42(4) :503-508.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部