期刊文献+

一种基于自体集层次聚类的否定选择算法 被引量:6

A negative selection algorithm based on hierarchical clustering of self set
原文传递
导出
摘要 否定选择算法是用于产生人工免疫检测器的重要算法,然而传统的否定选择过程需要将随机生成的候选检测器与全部自体数据进行匹配以排除识别了自体的无效检测器,该匹配过程导致检测器的生成效率过低,极大地限制了免疫算法的应用.为此,文中提出了一种基于自体集层次聚类的否定选择算法CB-RNSA.算法首先对自体数据进行层次聚类预处理,然后用聚类中心取代自体数据点与候选检测器进行匹配,以减少距离计算代价.在生成检测器的过程中,候选检测器被限定在非自体空间的低覆盖率区域内,以降低检测器冗余.对检测器的非自体空间覆盖率进行了概率分析,给出了中止生成检测器的条件,该条件较传统的预设检测器数量的中止条件更为合理.理论分析表明CB-RNSA的时间复杂度与自体集规模无关,从而解决了经典的否定选择算法的时间复杂度随自体数量呈指数增长这一难题,极大地提高了大自体样本空间下的检测器生成效率.对比实验结果表明:在相同的实验数据集与期望覆盖率下,CB-RNSA的检测率比经典的RNSA与V-detector算法分别提高了12.3%与7.4%,误警率分别降低了8.5%与4.9%,产生检测器的时间代价分别降低了67.6%和75.7%. Negative selection algorithm(NSA) is an important method of generating arti-cial immune detectors.However,the traditional NSAs aim at eliminating the self-recognized invalid detectors,by matching candidate detectors with the whole self set.The matching process results in extremely low generation e-ciency and signi-cantly limits the application of NSAs.In this paper,an improved NSA called CB-RNSA,which is based on the hierarchical clustering of self set,is proposed.In CB-RNSA,the self data is-rst preprocessed by hierarchical clustering,and then replaced by the self cluster centers to match with candidate detectors in order to reduce the distance calculation cost.During the detector generation process,the candidate detectors are restricted to the lower coverage space to reduce the detector redundancy.In the paper,probabilistic analysis is performed on nonself coverage of detectors.Accordingly,termination condition of the detector generation procedure in CB-RNSA is given.It is more reasonable than that of traditional NSAs,which are based on prede-ned detector numbers.The theoretical analysis shows the time complexity of CB-RNSA is irrelevant to the self set size.Therefore,the di-cult problem,in which the detector training cost is exponentially related to the size of self set in traditional NSAs,is resolved,and the e-ciency of the detector generation under a big self set is also improved.The experimental results show that:under the same data set and expected coverage,the detection rate of CB-RNSA is higher than that of the classic RNSA and V-detector algorithms by 12.3% and 7.4% respectively.Moreover,the false alarm rate is lower by 8.5% and 4.9% respectively,and the time cost of CB-RNSA is lower by 67.6% and 75.7% respectively.
出处 《中国科学:信息科学》 CSCD 2013年第5期611-625,共15页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60873246) 教育部重大项目培育基金(批准号:708075) 教育部博士点基金(批准号:20070610032)资助项目
关键词 人工免疫系统 否定选择算法 人工免疫检测器 聚类 覆盖率 arti-cial immune system negative selection algorithm arti-cial immune detector cluster coverage
  • 相关文献

参考文献3

二级参考文献13

  • 1荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208. 被引量:79
  • 2Butler D.Computer security: who’s been looking at your data[].Nature.2002
  • 3Li T.Computer Immunology[]..2004
  • 4Cheng S L,Tan R,Xong W L, et al.Computer Virus and its Protection Techniques[]..2004
  • 5Kephart J O,Arnold W C.Automatic extraction of computer virus signatures[].Proc of the Fourth International Virus Bulletin Conference.2001
  • 6Sheng J,Xie S Q.The Theory of Probability and Mathematical Statistics[]..1989
  • 7Pu J,Ji J F,Yi L Z, et al.User Manual for MATLAB Version 6.0[]..2002
  • 8Balthrop J,Forrest S,Newman M E J,et al.Technological networks and the spread of computer viruses[].Science.2004
  • 9P D’ haeseleer.An Immunological Approach to Change Detection: Theoretical Results[].Proc of the th IEEE Computer Security Foundations Workshopg.1996
  • 10Perelson A S,Weisbuch G.Immunology for physicists[].Reviews of Modern Physics.1997

共引文献51

同被引文献51

  • 1李涛.基于免疫的计算机病毒动态检测模型[J].中国科学(F辑:信息科学),2009,39(4):422-430. 被引量:11
  • 2KIM J, BENTLEY P J. The human immune system and network intrusion detection[C]//Proceedings of the 7th European Congress on Intelligent Techniques and Soft Computing. Aachen, Germany: EUFIT, 1999: 1120-1125.
  • 3FORREST S, PERELSON A S, ALL L, et al. Self_nonself discrimination in a computer[C]//Process of IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Press, 1994: 202- 212,.
  • 4GAO X Z, OVASKA S J, WANG X, et al. A Neural Networks- based Negative Selection Algorithm in Fault Diagnosis[J]. Neural Comput & Applic, 2008, (17): 91-98.
  • 5Kim J, Bentley P J, Aickelin U, et al. Immune system approaches to intrusion detection-a review[C]//Proceedings of the 3rd International Conference on Articial Immune Systems. Catania, Australia: Kluwer Academic Publishers. 2004:316-329.
  • 6Lincoln Laboratory. Information Systems Technology[EB/OL]. http://www.ll.mit.edu/IST/ideval/data/ 1999/1999 data in- dex.html, 2009-10-05.
  • 7ZHONG Y F, ZHANG L P. Sub-Pixel Mapping Based on Artificial Immune Systems for Remote Sensing Imagery [J]. Pattern Recognition, 2013, 46(11): 2902--2926.
  • 8ZITAR R A, HAMDAN A. Genetic Optimized Artificial Immune System in Spam Detectiom a Review and a Model [J]. Artificial Intelligence Review, 2013, 40(3): 305--377.
  • 9VENKATESAN S, BASKARAN R, CHELLAPPAN C, et al. Artificial Immune System Based Mobile Agent Platform Protection [J]. Computer Standards ~ Interfaces, 201a, 35(4): 365--373.
  • 10KIM G, LEE S, KIM S. A Novel Hybrid Intrusion Detection Method Integrating Anomaly Detection with Misuse Detec- tion[J]. Expert Systems with Applications, 2014, 41(4) : 1690--1700.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部