期刊文献+

社会化标注系统中基于关联规则的Tag资源聚类研究 被引量:4

Research on Tag Resource Clustering Based on Association Rule in Social Tagging System
原文传递
导出
摘要 运用关联规则挖掘标签间的相互关系,并结合典型的划分聚类算法k-means进行Tag资源自动聚类,从而实现对Tag资源重新组织,为用户提供更好地标签导航和浏览机制。并利用豆瓣网上的实例数据验证了算法的可行性和有效性。 In order to achieve reorganization of the user tags and better tag navigation,browsing mecha nism,we use the association rule to mine the relationships between tags.And then use the typical cluster ing algorithm--k-means,to cluster tag resources automatically,In the end,we use the data from Douban to verify the feasibility and effectiveness of the algorithm.
出处 《情报科学》 CSSCI 北大核心 2013年第9期73-77,98,共6页 Information Science
基金 教育部人文社科规划基金项目(10YJA870026) 国家社会科学基金项目(12BTQ038)
关键词 社会化标注系统 关联规则 Tag资源聚类 social tagging system association rule tag resource clustering
  • 相关文献

参考文献11

二级参考文献24

  • 1毕建欣,张岐山.关联规则挖掘算法综述[J].中国工程科学,2005,7(4):88-94. 被引量:51
  • 2谭义红,王鑫,周铁军.基于概念检索的中文搜索引擎的设计与实现[J].计算机应用与软件,2006,23(5):38-40. 被引量:4
  • 3陈小华,赵捧未.基于关联规则的个性化信息检索系统研究[J].情报科学,2006,24(6):915-918. 被引量:12
  • 4Buckley C, Sahon G, Allan J, Singhala. Automatic Query Expansion Using SMART[ R]. Technical Report,TREC - 3,1995:69 - 80.
  • 5HanJ. andY. Fu. Discovery of Multiple - Level Association Rules From Large Databases[ R]. Proceedings of the 21thVLDB, September, 1995:420 - 431.
  • 6Ramakrishnan M. An Efficient Data Clustering Method for Very Large Databases[C]//Proc. of the ACM Int'l Conf. on Management of Data. [S. l.]: ACM Press, 1996.
  • 7Brown C. A Practical Application of Simulated Annealing to Clustering[J]. Pattern Recognition, 1992, 25(5): 401-412.
  • 8Chen L, Bhowmick SS, Chia LT. Mining association rules from structural deltas of historical XML documents. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 3056:452-457 2004.
  • 9Srikumar,Krishnamoorthy, Bhasker, Bharat. Efficiently mining Maximal Frequent Sets in dense databases for discovering association rules.Intelligent Data Analysis, 2004,8(2) :171, 12.
  • 10Zhang CQ, Zhang SC. Association rule mining - Models and algorithms - Introduction. LECTURE NOTES IN ARTIFICIAL INTELLIGENCE 2307:1 + 2002.

共引文献42

同被引文献38

  • 1Cynthia Changxin Wang.Using Domain Ontology in a Semantic Blogging System for Construction Professionals[J].Tsinghua Science and Technology,2008,13(S1):279-285. 被引量:2
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 3Farooq U, Kanampallil T G, Song Y, et al. Evaluating TaggingBehavior in Social Bookmarking Systems : Metrics and DesignHeuristics [ C ] //Proc of the 2007 international ACM conferenceon supporting group work. New York: ACM, 2007 : 351-360.
  • 4Kiu C G, Tsui E, Taxo - Folk : A Hybrid Taxonomy - folksonomyStructure for Knowledge Classification and Navigation [ J]. ExpertSystems with Applications, 2011,38 (5) : 6049-6058.
  • 5Aleksandra K M, Akexabdris N, Miijana I. Social Tagging inRecommender Systems: a Survey of the State-of-the-art andPossible Extensions [J]. Artificial Intelligence Review,2010,33(3) : 187-209.
  • 6Park H S, Jun C H. A Simple and Fast Algorithm for K-me-doids Clustering[J]. Expert Systems with Applications,2009,36(2):3336-3341.
  • 7Raghuvira P A, Vani K S, Devi J R, et al. An Efficient DensityBased Improved K-medoids Clustering Algorithm [ J ]. Interna-tional Journal of Advanced Computer Science and Applications,2011 , 2(6) ;49-54.
  • 8Aizawa A. An Information - theoretic Perspective of tf-idf Meas-ures [J]. Information Processing &Management, 2003, 39(1):45- 65.
  • 9BEGEMAN G, KELLER P.SMADJIA F.Automated tag clustering: improving search andexploration in the tag space [C]/ / Proc ofCollaborative Web Tagging Workshop atWorld Wide Web.2006: 22-26.
  • 10曹高辉,焦玉英,成全.基于凝聚式层次聚类算法的标签聚类研究[J].现代图书情报技术,2008(4):23-28. 被引量:39

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部