期刊文献+

基于计算机视觉的香蕉贮藏过程中颜色和纹理监测 被引量:11

Color and Texture Monitoring Based on Computer Vision during Banana Storage
下载PDF
导出
摘要 利用计算机视觉技术对香蕉在贮藏过程中颜色和纹理的变化进行研究。以第1阶段的青香蕉为研究对象,在贮藏过程中每天获取其图像,并将图像二值化,以其为模板分别与灰度、R、G和B分量图像点乘进行背景分割,提取彩色分量的均值作为颜色指标;预处理后灰度图像的共生矩阵由不规则的生成方式提取,并获取其纹理二阶矩、对比度和均匀度3个纹理指标。实验结果表明,结合R和G均值的变化曲线可对香蕉在第6阶段之前的表面状况进行描述,采用基于灰度共生矩阵的对比度和均匀度的变化曲线对香蕉在第6阶段之后的表面状况进行描述。 The variation of color and texture during banana storage was studied based on computer vision.The images of green banana in first mature stage were acquired everyday during storage.After the binary operation,RGB and gray images were masked by the binary images to eliminate the background.Then,R,G and B average values were extracted from pre-processed color images as color indexes.The graylevel co-occurrence matrix generating rule of the irregular image was used to obtain these matrixes of preprocessed gray images.Three texture descriptors were extracted as texture indexes from these matrixes,namely energy,contrast and homogeneity,respectively.Results showed that the change curve of R average values in combination with that of G could describe banana surface condition before the sixth mature stage,and the curve of contrast and homogeneity could do that after the sixth mature stage.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2013年第8期180-184,共5页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31271896 30800864) 上海市自然科学基金资助项目(12ZR1420500)
关键词 香蕉 计算机视觉 颜色 纹理 灰度共生矩阵 监测 Banana Computer vision Color Texture Gray-level co-occurrence matrix Monitoring
  • 相关文献

参考文献19

  • 1Salvador A, Sanz T, Fiszman S M. Changes in colour and texture and their relationship with eating quality during storage of two different dessert bananas [ J]. Postharvest Biology and Technology, 2007, 43 (3) : 319 - 325.
  • 2Chen C R, Ramaswamy H S. Color and texture change kinetics in ripening bananas [ J ]. Lebensmittel-Wissenschaft Und- Technologie-Food Science and Technology, 2002, 35 (5) : 415 - 419.
  • 3Ward G, Nussinovitch A. Peel gloss as a potential indicator of banana ripeness [ J ]. Food Science and Technology, 1996, 29 (3) : 289 - 294.
  • 4李云,钱春梅,陆旺金,张昭其,庞学群.香蕉和大蕉果实在不同温度下催熟后的色泽变化[J].园艺学报,2006,33(3):617-620. 被引量:36
  • 5Da-Wen Sun. Computer vision--an objective, rapid and non-contact quality evaluation tool for the food industry [ J]. Journal of Food Engineering, 2004, 61 ( 1 ) : 1 - 2.
  • 6Blasco J, Aleixos N, Molto E. Machine vision system for automatic quality grading of fruit [ J]. Biosystems Engineering, 2003, 85(4) :415 -423.
  • 7Aleixos N, Blasco J, Navarron F, et al. Multispectral inspection of citrus in real-time using machine vision and digital signal processors [ J ]. Computers and Electronics in Agriculture, 2002, 33 (2) : 121 - 137.
  • 8Haralick R M,Shanmugam K,Dinstein I H. Textural features for image classification [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3 (6) : 610 - 621.
  • 9伍学千,廖宜涛,樊玉霞,成芳.基于KFCM和改进分水岭算法的猪肉背最长肌分割技术[J].农业机械学报,2010,41(1):172-176. 被引量:14
  • 10Mansoory M S, Fardad H, Enteshari R, et al. Isolating healthy bananas from unhealthy ones based on feature extraction and clustering method using neural network[ J]. Modern Applied Science, 2010, 4 (11 ) :51 - 60.

二级参考文献44

共引文献59

同被引文献161

引证文献11

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部