期刊文献+

一类三维幂零向量场的5次超规范形

Quintic Hypernormal Form of a Class of Nilpotent Three-dimensional Vector Fields
下载PDF
导出
摘要 为了研究三维幂零向量场的超规范形(最简规范形、唯一规范形),利用新次数函数和多重李括号方法,通过引入分块矩阵的新记号,研究了一类具有对称性质的三维幂零向量场的5次超规范形问题;证明了在一定条件下,此类向量场的二阶规范形是超规范形,并获得其二阶5次超规范形的唯一形式;还研究了此类向量场的退化情况,验证了与二维结论的一致性. To research hypernormal form ( simplest normal form, unique normal form) of nilpotent three- dimensional vector fields, the problem of quintic hypernormal form of a class of nilpotent three- dimensional vector fields with symmetrical property was studied by using new grading function and the method of multiple Lie brackets and by introducing the new marks for block matrices firstly, then that the second order normal form of above vector field was hypernormal form had been proved, and the unique form of the second order quintic hypernormal form was obtained. At last, the degenerate case of above vector fields was studied, and that this could be consistent with the conclusions in dimension 2 was verified.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2013年第9期1429-1433,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(11072007) 北京市自然科学基金资助项目(1122001)
关键词 三维幂零向量场 超规范形 新次数函数 多重李括号 nilpotent three-dimensional vector fields hypernormal form new grading function multiple Lie brackets
  • 相关文献

参考文献12

  • 1KUZNETSOV Y A. Practical computation of normal forms center manifolds at degenerate Bogdanov-Takens bifurcations [ J]. International Journal of Bifurcation and Chaos, 2005, 15 : 3535-3546.
  • 2KOKUBU K, OKA H, WANG Duo. Linear function and further reduction of normal form [ J ] of Differential Equations, 1996, 132 : 293-318.
  • 3WANG Duo, LI Jing, HUANG Ming-hai, et al. normal form of Bogdanov-Takens singularities [ J] of Differential Equations, 2000, 163 : 223-238.
  • 4grading Journal Unique Journal LI Jing, WANG Duo, ZHANG Wei. General forms of the simplest normal form of Bogdanov-Takens singularities [ J ]. Dynamics of Continuous, Discrete and Impulsive Systems, Series A : Mathematical Analysis, 2001, 8 : 519- 530.
  • 5PENG Jian-ping, WANG Duo. A sufficient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities [J]. International Journal of Bifurcation and Chaos, 2004, 14 (9) : 3337-3345.
  • 6WANG Duo, ZHENG Ming, PENG Jian-ping. Further reduction of normal forms and unique normal forms of smooth maps [ J]. International Journal of Bifurcation and Chaos, 2008, 18(3): 803-825.
  • 7BAIDER A, SANDERS J. Further reduction of the Takens-Bogdanov normal form [ J]. Journal of Differential Equations, 1992, 99: 205-244.
  • 8ALGABA A, FREIRE E, GAMERO E, et al. On the Takens-Bogdanov bifurcation in the Chua's equation [ J]. IEICE Trans, 1999, 82: 1722-1782.
  • 9CHEN Guo-ting, DORA J. An algorithm for computing a new normal form for dynamical systems [ J ]. Journal of Symbolic Computation, 2000, 29(3) : 393-418.
  • 10GAO Bo, ZHANG Wei-nian. Parametric normal forms of vector fields and their further simplification [ J ]. Nonlinearity, 2010, 23: 2539-2557.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部