期刊文献+

面向DaaS的隐私保护机制研究综述 被引量:2

Research on privacy preservation mechanism for DaaS
下载PDF
导出
摘要 DaaS是基于云基础设施对外提供数据库服务的云服务模式,能有效地解决个人和企业处理海量数据所带来的存储、管理压力,但隐私泄露极大地阻碍了DaaS的发展,如何增强现有DaaS模式的隐私保护成为亟需解决的问题。首先通过文献分析的方法剖析了DaaS的服务框架及其隐私泄露模型,接着对DaaS中实现委托数据的机密性、对机密数据查询过程中的隐私保护及查询结果的验证、委托数据完整性验证过程中隐私保护三个方面的发展现状进行了综合分析。通过分析得出,现有的隐私保护方法对DaaS中数据更新和查询效率方面的支持及其实用性都存在不同程度的缺陷,如何设计高效的机密性算法和保护隐私的数据查询及查询结果验证仍是未来研究的重点。最后展望了未来的研究方向。 DaaS is a kind of cloud service which can provide the database services for others based on cloud infrastructure. It can effectively solve the difficulty of storage and management for massive data of individuals and enterprises. However, privacy leaks greatly hinder the development of DaaS. How to enhance the privacy protection of the existing DaaS becomes an urgent problem needed to be solved. Adopting the literature analysis method, this paper firstly summarized service architecture of DaaS and its privacy leaks mode. Then comprehensively analyzed the present researches on data confidentiality, query privacy preserving and query result validation, privacy preserving during data integrity validation of DaaS. From the analysis, it can be inferred that existing privacy preserving methods exist varying degrees of impairment in the aspects of efficiency of data update and query of DaaS and its practical applications. How to design more efficient algorithms for data confidential and the data que- ries with privacy preserving and query resuhs validation are still the future research focus. Finally, it gave the he future re- search directions of in the privacy preserving in DaaS.
出处 《计算机应用研究》 CSCD 北大核心 2013年第9期2565-2569,2582,共6页 Application Research of Computers
基金 广东省医学基金资助项目(A2012295) 广东省战略性新兴产业核心攻关项目(2012A010701005) 广东省计算机网络重点实验室开放基金资助项目(CCNL201105)
关键词 云计算 数据库即服务 隐私保护 数据机密性 隐私信息检索 cloud computing database as a service (DaaS) privacy preservation data confidentiality privacy informa-tion retrieve
  • 相关文献

参考文献4

二级参考文献63

  • 1Parakh A, Kak S. Space efficient secret sharing for implicit data security [J]. Information Sciences, 2011, 181(2): 335 - 341.
  • 2Itani W, Kayssi A, Chehab A. Privacy as a service: Privacy-aware data storage and processing in cloud computing architectures [C]// Proceedings of the 8th IEEE International Conference on Dependable, Autonomic and Secure Computing. Chengdu, China: IEEE Computer Society, 2009:711-716.
  • 3Roy I, Ramadan H, Setty S, et al. Airavat: Security and privacy for map reduce [C]// Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation. San Jose, USA: USENIX Association Berkeley, 2010: 297 -312.
  • 4Mowbray M, Pearson S. A client based privacy manager for cloud computing [C]// Proceedings of the 4th International ICST Conference on Communication Syslem Software and Middleware. New York, USA: Association for Computing Machinery, 2009.
  • 5Muntes -Mulero V, Nin J. Privacy and anonymization for very large datasets [C]// Proceedings of the ACM 18th International Conference on Information and Knowledge Management. New York, USA: Association for Computing, 2009, 2117-2118.
  • 6Creese S, Hopkins P, Pearson S, et al. Data protection aware design for cloud services [C]// Proceedings of the 1st International Conferenee on Cloud Computing. Lecture Notes in Computer Science. Beijing, China: Springer, 2009:119 - 130.
  • 7Ghemawat S, Gobioff H, Leung S. The Google file system [C]// Proceedings of the 9th ACM Symposium on Operating Systems Principles. New York, USA: Association for Computing Machinery, 2003.
  • 8Armbrust M, Fox A, Griffith R, et al. Above the clouds: A berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28 [R]. Berkeley, USA: University of California at Berkeley, 2009.
  • 9Wang L, TaoJ, Kunze M, et al. Scientific cloud computing: Early definition and experience [C]//Proceedings of the 10th International Conference on High Performance Computing and Communications. Dalian, China: IEEE Computcr Society, 2008: 825-830.
  • 10Kaufman L. Data security in the world of cloud computing [J]. IEEE Security and Privacy, 2009, 7(4): 61- 64.

共引文献118

同被引文献16

  • 1HACIGUMUS H,MEHROTRA S,IYER B.Providing Database as a Service[C] //Proc of the 18th International Conference on Data Engineering.Washington:IEEE Computer Society Press,2002:29-38.
  • 2AGRAWAL R,EVFIMIEVSKI A,SRIKANT R.Information Sharing across Private Databases[C] //Proceedings of ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery Press,2003:86-97.
  • 3TIAN Xiuxia.Access Control and Query Processing with Privacy in DaaS Paradigm[D] .Shanghai,China:College of Computer Science,Fudan University,2012.
  • 4AGRAWAL R,KIERNAN J,SRIKANT R,et al.Order Preserving Encryption for Numeric Data[C] // Proceedings of ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery Press,2004:563-574.
  • 5ANCIAUX N,BENZINE M,BOUGANIM L,et al.GhostDB:Querying Visible and Hidden Data without Leaks[C] //Proceedings of ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery Press,2007:677-688.
  • 6王宝伟,王洪国,刘乐,王鑫.一种改进的混合量子遗传算法[J].计算机科学,2008,35(8):112-115. 被引量:10
  • 7李学明,刘志军,秦东霞.隐私保护数据挖掘[J].计算机应用研究,2008,25(12):3550-3555. 被引量:6
  • 8李太勇,唐常杰,吴江,周敏.基于两次聚类的k-匿名隐私保护[J].吉林大学学报(信息科学版),2009,27(2):173-178. 被引量:1
  • 9周水庚,李丰,陶宇飞,肖小奎.面向数据库应用的隐私保护研究综述[J].计算机学报,2009,32(5):847-861. 被引量:221
  • 10许丽佳,黄建国,王厚军,龙兵.混合优化的贝叶斯网络结构学习[J].计算机辅助设计与图形学学报,2009,21(5):633-639. 被引量:14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部