期刊文献+

用于多标记学习的局部顺序分类器链算法 被引量:3

Locally ordinal classifier chains for multi-label learning
下载PDF
导出
摘要 标记间的相关性在分类问题中具有重要作用,目前有研究将标记相关性引入多标记学习,通过分类器链的形式将标记结果引入属性空间,为学习其他标记提供有用信息。分类器链中标记的预测顺序具有随机性,分类结果存在着很大的不确定性与不稳定性,且容易造成错误信息的传播。为此充分考虑标记的局部分布特性,提出了一种局部顺序分类器链算法,解决分类器链中分类器顺序问题。实验表明,该算法性能优于其他常用多标记学习算法。 The correlation among different labels plays an important role in classification problems, and recent studies have taken into account label correlation during multi-label learning. The label information is marked into the attribute space through the classifier chains and provides useful information for the other labels during the classification process. The classifica- tion results are indeterminate and instable because of the random classifier order in the classifier chain. Besides,it may cause to propagate the error label information. This paper fully considerd the local distribution of instance labels, and proposed a locally ordinal classifier chain algorithm. Experimental results show that, the new algorithm outperforms the other commonly used multi-label algorithms most of the time.
出处 《计算机应用研究》 CSCD 北大核心 2013年第9期2606-2609,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61170145) 国家教育部高等学校博士点专项基金资助项目(20113704110001) 山东省自然科学基金 科技攻关计划资助项目(ZR2010FM021 2008B0026 2010G0020115)
关键词 多标记学习 标记相关性 分类器链 K-近邻 multi-label learning label correlation classifier chains K-NN
  • 相关文献

参考文献16

  • 1BOUTELL M R, LUO Jie-bo, SHEN Xi-peng, et al. Learning multi-la- bel scene classification [ J ]. Pattern Recognition, 2004,37 ( 9 ) : 1757-1771.
  • 2ZHANG M/n-ling, ZHOU Zhi-hua. A k-nearest neighbor based algo- rithm for multi-label classification [ C ]//Proc of IEEE International Conference on Granular Computing. New York:IEEE Press,2005: 718-721.
  • 3GODBOLE S, SARAWAGI S. Discriminative methods for multi-la- beled classification[ C ]//Proc of the 8th Pacific-Asia Conference onKnowledge Discovery and Data Mining. Berlin : Springer,2004:22-30.
  • 4TSOUMAKAS G, KATAKIS L Multi label classification: an overview [J]. Intomational Journal of Data Warehousing and Mining, 2007,3(3) :1-13.
  • 5HULLERMEIER E, FURNKRANZ J, CHENG W,et aL Label ranking by learning pairwise preferences [ J ]. Artificial Intelligence, 2008, 372(16) :1897-1916.
  • 6DIMOU A,TSOUMAKAS G,MEZARIS V,et al. An empirical study of multi-label learning methods for video annotation [ C ]//Proe of the 7 th International Workshop on Content-Based Multimedia Indexing. Wash- ington DC : IEEE Computer Society,2009 : 19- 24.
  • 7JI Sui-wang, TANG Lei, YU Shi-peng, et al. Extracting shared sub- space for multi-label classification [ C ]//Proc of the 14th ACM SIGK- DD International Conference on Knowledge Discovery and Data Min- ing. New York : ACM Press,2008:381 - 389.
  • 8READ J, PFAHRINGER B, HOLMES G. Multi-label classification u- sing ensembles of pruned sets[ C ]//Proc of the 8th IEEE International Conference on Data Mining. New York:IEEE Press ,2008:995-1000.
  • 9LOZA M E, FUMKRANZ J. Efficient pairwise multi-label classifica- tion for large-scale problems in the legal domain [ C ]//Proc of ECML- PKDD '08 European Conference on Machine Leaming and Knowledge Discovery in Databases. Berlin : Springer,2008:50- 65.
  • 10SUN Liang,JI Shui-wang,YE Jie-ping. Hyper-graph spectral learning for multi-label classification [ C ]//Proc of the 14th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York : ACM 'Press,2008 : 668- 676.

同被引文献10

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部