期刊文献+

结合多特征和SVM的SAR图像分割 被引量:4

Multiple features and SVM combined SAR image segmentation
下载PDF
导出
摘要 为实现灰度共生矩阵(GLCM)多尺度、多方向的纹理特征提取,提出了一种结合非下采样轮廓变换(NSCT)和GLCM的纹理特征提取方法。先用NSCT对合成孔径雷达(SAR)图像进行多尺度、多方向分解;再对得到的子带图像使用GLCM提取灰度共生量;然后对提取的灰度共生量进行相关性分析,去除冗余特征量,并将其与灰度特征构成多特征矢量;最后,充分利用支持向量机(SVM)在小样本数据库和泛化能力方面的优势,由SVM完成多特征矢量的划分,实现SAR图像分割。实验结果表明,基于NSCT域的GLCM纹理提取方法和多特征融合用于SAR图像分割,可以提高分割准确率,获得较好的边缘保持效果。 In order to implement multi-scale and multi-directional texture extraction, this paper proposed a texture feature ex- traction algorithm l which combined the nonsubsampled contourlet transform (NSCT) and gray level co-occurrence matric (GL- CM). Firstly,it translated the SAR image to be segmented via NSCT. Then, it computed the gray co-occurrence features via GLCM for the decomposed sub-bands, and selected the features extracted by correlation analysis to remove redundant features. Meanwhile, it extracted gray features to constitute a multi-feature vector with the gray co-occurrence features. Finally, making full use of advantages of resolving the small-sample statistics and generalizing ability of support vector machines ( SVM), it used SVM to divide the multi-feature vector to segment the SAR image. Experimental results show that the proposed method for SAR image segmentation can improve segmentation precision, and obtain better edge preservation results.
作者 钟微宇 沈汀
出处 《计算机应用研究》 CSCD 北大核心 2013年第9期2846-2851,共6页 Application Research of Computers
关键词 合成孔径雷达 图像分割 非下采样轮廓变换 灰度共生矩阵 支持向量机 特征选择 多特征融合 SAR image segmentation NSCT GLCM SVM feature selection multiple features fusion
  • 相关文献

参考文献19

  • 1安成锦,牛照东,李志军,陈曾平.典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J].电子与信息学报,2010,32(9):2215-2219. 被引量:44
  • 2焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
  • 3KANDASWAMY U, ADJEROH D A, LEE M C. Efficient texture analysis of SAR image[J]. IEEE Trans on Geoscience and Re- mote Sensing,2005,43(9) :2075-2083.
  • 4WANG Zhi-zhong, YONG Jun-hai. Texture analysis and classification with linear reglvssion model based on wavelet transform [ J ]. IEEE Trans on Image Processing ,2008,17(8 ) : 1421-1430.
  • 5苏慧,费树岷.基于多分辨率分析及灰度共生矩阵的织物纹理识别[C]//第25届中国控制会议.北京:北京航空航天大学出版社,2006:1867-1871.
  • 6韩彦芳,施鹏飞.基于多层小波和共生矩阵的纹理表面缺损检测[J].上海交通大学学报,2006,40(3):425-430. 被引量:7
  • 7尚赵伟,张明新,赵平,沈钧毅.基于不同复小波变换方法的纹理检索和相似计算[J].计算机研究与发展,2005,42(10):1746-1751. 被引量:11
  • 8钟桦,杨晓鸣,焦李成.基于多分辨共生矩阵的纹理图像分类[J].计算机研究与发展,2011,48(11):1991-1999. 被引量:19
  • 9CLAUSI D A. Improved texture recognition of SAR sea ice image by data fusion of MRF features wilh traditional methods [ C ]//Proc of IEEE lnternationai Symposium oil Geoscience and Remote Sensing. 2001:1170-1172.
  • 10王海丰,李壮,任洪娥,等.基于非下采样Contourlet变换和SVM的纹理图像分割算法[c]//第二十九届中国控制会议论文集.2010:2712-2716.

二级参考文献81

共引文献2688

同被引文献22

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部