期刊文献+

0.5Li2MnO3-LiNi0.5Mn0.5O2的电化学行为及结构稳定性研究 被引量:3

Study on electrochemical behavior and structural stability of 0.5Li_2MnO_3-LiNi_(0.5)Mn_(0.5)O_2
下载PDF
导出
摘要 对低温燃烧法合成的富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的充放电性能、充放电循环过程中Mn离子的价态变化、电化学阻抗变化以及正极材料的结构变化进行了系统的研究。研究结果表明,在开头的若干次充放电循环中,富锂锰基正极材料0.5Li2MnO3-LiNi0.5Mn0.5O2的放电比容量随循环次数的增加而增加,经过若干次循环后可以达到一个相当高的水平,其循环性能良好。以0.1 C在2.5~4.6 V之间充放电,放电比容量可达244 mAh/g,第50次循环,仍保有233 mAh/g。充放电过程中晶格中的Mn4+离子部分转变为Mn3+并参与电化学反应,这是造成放电比容量随循环次数增加而增加的原因,而显微结构和晶体结构保持稳定及电化学阻抗的降低是材料具有良好循环性能的原因。 The charger/discharge performance of the Li-rich Mn-based cathode material 0.5Li2MnO3-LiNi0.5Mn0.5O2 synthesized via low temperature combustion process, the valence change of Mn ions, the change of electrochemical impedance and structure of the cathode material during charge/discharge cycle process was systematically studied. The results show that the discharge capacity of the0.5Li2MnO3-LiNi0.5Mn0.5O2 increases with cycle number in the first several cycles, after a dozen cycles can reach a very high level, its cycle performance is excellent. Its 0.1 C discharge specific capacity is up to 244 mAh/g and still retains 233 mAh/g at 50th cycle when charged/discharged between 2.5-4.6 V. The Mn4+ ions in the lattice partly transformed into Mn3+ and participated in the following electrochemical reaction, which is the reason why discharge capacity increases with cycle number. The microstructure and crystal structure remains stable and the electrochemical impedance decrease during charge/discharge process, which is the reason why the cathode has excellent cycle performance.
出处 《电源技术》 CAS CSCD 北大核心 2013年第8期1310-1313,共4页 Chinese Journal of Power Sources
基金 广西自然科学基金项目(0832256) 广西研究生教育创新计划项目(2011105960805M16)
关键词 锂离子电池 富锂锰基正极材料 0 5Li2MnO3-LiNi0 5Mn0 5O2 低温燃烧合成 lithium ion batteries U-rich Mn-based cathode material 0.5Li2MnO3-LiNi0.5Mn0.5O2 low temperature combustion synthesis
  • 相关文献

参考文献12

  • 1KIM S H,KIM S J, NAHM K S,et al. Synthesis of Li2MnO3-like electrode materials by reaction in solutions [J]. Jurnal of Alloys Compounds, 2008,449( 1/2): 339-342.
  • 2ZHENG J M, WU X B, YANG Y. A comparison of preparation method on the electrochemical performance of cathode material Li- [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery [J]. Electrochimica Acta, 2011.56(8): 3071-3078.
  • 3LI J, KLOPSCH R, STAN M C, et al. Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16- Co0.08]O2 with improved rate capability[J]. Journal of Power Sources, 2011,196(10): 4821-4825.
  • 4ITO A,LI D, SATO Y,et al. Cyclic deterioration and its improve- ment for Li-rich layered cathode material Li [Ni0.17TLi0.2Co0.07Mn0.56]O2 [J]. J Power Sources, 2010, 195(2): 567-573.
  • 5YU L Y, QIU W H, HUANG J Y, et al. Synthesis and electrochemi- cal characteristics of x Li2MnO3 · (1 - x)Li - (Ni1/3Co1/3Mn1/3)O2 com- pounds[J]. Int J Miner Metal Mater, 2009, 16(4): 458-462.
  • 6PRAMANIK A, GHANTY C, MAJUMDER S B. Synthesis and electrochemical characterization of xLi(Ni0.8Co0.15Mg0.05)O2-( 1 - x)Li- [Li1/3Mn2/3]O2(0.0 ≤ x≤1.0) cathodes for Li rechargeable batteries[J] Solid State Sciences, 2010, 12(10): 1797-1802.
  • 7KANG S H, THACKERAY M M. Enhancing the rate capability of high capacity x Li2MnO3·(1 - x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment[J]. Electrochem Commun, 2009, 11 (4): 748- 751.
  • 8LIM J H, BANG H, LEE K S, et al. Electrochemical characterization of Li2MnO3-Li [Ni1/3Co1/3Mn1/3]O2- LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries[J]. J Power Sources 2009, 189(35): 571-575.
  • 9GAO J, KIM J, MANTHIRAM A. High capacity Li[Li0.2Mn0.54Ni0.13- Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochem Commun, 2009, 11 (1) 84-86.
  • 10JEONG J H, JIN B S, KIM W S, et al. The influence of composi- tional change of 0.3 Li2MnO3·0.7 LiMn1-xNiyCo0.1O2 (0.2 ≤ x≤0.5 y=x-0.1) cathode materials prepared by co-precipitation [J]. J Power Sources, 2011, 196(7): 3439-3442.

同被引文献28

  • 1PARK Y J, HONG Y S, WU X L, et al. Structural investigation and electrochemical behaviour of Li[Ni~Li(v3 2~3~IVln(z3-~3)]O2 com- pounds by a simple combustion method [J]. Journal of Power Sources, 2004(129): 288-295.
  • 2KIM J S, JOHNSON C S, VAUGHEY J T, et al. Electrochemical and structural properties of xLi2M' O3 "(1 -x)LiMn05Ni0502 elec- trodes for lithium batteries (M' =Ti, Mn, Zr; 0 ~<x~<0.3)[J]. Chem Mater, 2004, 16: 1996-2006.
  • 3JOHNSON C S, KIM J S, LEFIEF C, et al. The significance of the LizMnO3 component in composite xLi2MnO3 (1 -x)LiMn0~Ni,50~ electrodes[J]. Electrochemistry Communications, 2004 (6): 1085- 1091.
  • 4HY S, SU W N, CHEN J M, et al. Soft X-ray absorption spec- troscopic and raman studies on Li~.zNi02Mno60~ for lithium-ion bat- teries[J]. Phys Chem C, 2012, 116: 25242-25247.
  • 5KARTHIKEYANA K, AMARESHA S, LEEA G W, et al. Elec- trochemical performance of cobalt fi'ee, Lit.z (Mn0.32Ni03zFe0.L6)Oz cathodes for lithium batteries[J]. Electrochimica Acta, 2012(68): 246-253.
  • 6SHI S J, TU J P, TANG Y Y, et al. Combustion synthesis and electrochemical performance of Li[Lio2Mrlo.5,Ni0.13Co0A3]Oz with im- proved rate capability[J]. Journal of Power Sources, 2013 (228): 14-23.
  • 7BETTGE M, LI Y, SANKARANM B, et al. Improving high-ca- pacity LiL2Ni0.1sMn0.ssCo0.102-based lithium-ion cells by modifying the positive electrode with alumina [J]. Journal of Power Sources, 2013(233): 346-357.
  • 8XIA Y J, HIDESHIMA Y, KUMADA N, et al. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries part V: enhancement of the elevated temperature performance of Li/LiMn204 cells [J]. Journal of Power Sources, 1998(24): 24-28.
  • 9TU J, ZHAO X B, CAO G S, et al. Enhanced cycling stability of LiMn204 by surface modification with melting impregnation method[J]. Electrochimica Acta, 2006(51):6456-6462.
  • 10赵灵智,汝强.锂离子电池材料的研究现状[J].广州化工,2009,37(4):3-4. 被引量:18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部