期刊文献+

Thermodynamic functions and growth constants of web-like ZnO nanostructures

Thermodynamic functions and growth constants of web-like ZnO nanostructures
原文传递
导出
摘要 Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared products were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results showed that the reaction temperature was an important parameter, and that there was a feedback effect between nano-structure and growth parameters, combined with in situ micro-calorimetry, the reaction rate constants of the three systems were found to have been: 2.43×10-6, 2.70×10-8 and 3.12×10-7s-1 respectively. Furthermore, based on the relationship governing the potential differences between nanoand bulk ZnO, thermodynamic functions of nano-ZnO such as standard molar entropy (Sm,ZnO(nano)), standard molar Gibbs free energy of formation (△rGm,ZnO(nano)), and standard molar enthalpy of formation (△rHm,ZnO(nano)) have been calculated by the electrochemical method. Web-like ZnO nanostructures have been successfully synthesized using the potassium nitrate route at various temperatures to simplify conventional preparation methods. The structures and morphologies of the as-prepared products were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). The results showed that the reaction temperature was an important parameter, and that there was a feedback effect between nano-structure and growth parameters, combined with in situ micro-calorimetry, the reaction rate constants of the three systems were found to have been: 2.43×10-6, 2.70×10-8 and 3.12×10-7s-1 respectively. Furthermore, based on the relationship governing the potential differences between nanoand bulk ZnO, thermodynamic functions of nano-ZnO such as standard molar entropy (Sm,ZnO(nano)), standard molar Gibbs free energy of formation (△rGm,ZnO(nano)), and standard molar enthalpy of formation (△rHm,ZnO(nano)) have been calculated by the electrochemical method.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2013年第27期3380-3384,共5页
基金 supported by the National Natural Science Foundation of China (20963001,21273050) Guangxi Natural Science Foundation of China (0991001z,2011GXNSFB018021)
关键词 纳米氧化锌 反应速率常数 纳米结构 热力学函数 标准摩尔生成焓 场发射扫描电子显微镜 网络状 Gibbs自由能 nano-thermodynamics, nano-ZnO, thermal properties, microcalorimetry, thermodynamic functions
  • 相关文献

参考文献1

二级参考文献3

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部