期刊文献+

基于数字岩芯技术的高温压浸润岩石摩擦机理研究 被引量:2

Application of digital rock technology to saturated rock friction mechanism under high pressure and temperature
下载PDF
导出
摘要 基于量子力学格子玻尔兹曼理论和多尺度计算机断层成像(CT)技术,在并行中央处理器-图形处理器(CPU-GPU)平台下,为低密度砂岩、花岗岩、大理岩、榴辉岩及橄榄岩等典型岩石试样建立三维数字岩芯模型;进而,应用夹杂超奇异积分-D3Q27格子玻尔兹曼法对多时空尺度(时间尺度:10~100μs;空间尺度:10μm~10cm)、高温压(温度范围:0~600℃;压力范围:0~1GPa)饱和浸润典型岩石试样摩擦过程进行虚拟实验研究,得到摩擦面微裂纹亚临界扩展、摩擦面摩擦应力变化和摩擦面摩擦系数大小随滑动速度、滑动时间、温度和压力大小及加载方式变化规律;最后,通过分析虚拟实验中高温压饱和浸润典型岩石从静止到发生滑动摩擦过程,讨论了离子态水对摩擦系数影响和摩擦面微观摩擦机理.研究结果为地球内部物质软流圈-岩石圈-地壳间运移机理问题、水库对断层活动构造带影响机理问题分析在理论上提供了支持和帮助. Based on the digital rock technology that combines lattice Boltzmann theory (LBM-numerical method) and multi--scale computed tomography (CT-experimental method) method, the three dimensional digital rock models for typical rocks (sand, granite, marble, eclogite and olivine) are established. Then, the micro-scale saturated pore- network dislocations-defects propagation, the concentrated stress distribution and the saturated rock friction coefficient (SRFC) of rock and rock masses under various conditions (temperature up to ~600 ~C, pressure up to ~1 GPa) at multi-temporal (10~100 μs) and spatial (10 /μm^10 cm) scales are calculated, and the SRFC as function of slip velocity, slip time, temperature, and pressure is obtained. The method of combining experimentally measured physical 3D model with computer simulation (virtual experiments) to analyze high temperature and pressure rock friction mechanism provides a novel new approach to understanding the rocks-minerals convection inthe earth interior and reservoir-induced earthquake problem.
出处 《地球物理学进展》 CSCD 北大核心 2013年第4期1689-1699,共11页 Progress in Geophysics
基金 地壳深部探测项目SinoProbe07 基金(0819011A90) 国家自然基金面上项目(No.D0408/4097409)联合资助
关键词 数字岩芯技术 浸润岩石摩擦机理 高温压 并行CPU-GPU计算 格子波尔兹曼方法 virtual digital rock technology, saturated rock friction mechanism, high temperature and pressure, parallel CPU-GPU technology, Lattice Boltzmann method
  • 相关文献

参考文献20

  • 1Ruina A. Slip instability and state variable friction laws[J]. Journal of Geophysics Research, 1983, 88 (B12): 10359- 10370.
  • 2Dieterich J H. Modeling of rock friction 1. experimental results and constitutive equations [J 1. Journal of Geophysical Research, 1979, 84(B5). 2161-2168.
  • 3Dieterich J H. Modeling of rock friction 2. simulation of preseismic slip[J]. Journal of Geophysical Research, 1979, 84 (B5) 2169-2175.
  • 4Runia A. Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior I-D3. Providence: Brown University, 1980.
  • 5陈建业,杨晓松,石耀霖.热-流-固耦合方法模拟岩石圈与软流圈相互作用[J].地球物理学报,2009,52(4):939-949. 被引量:8
  • 6石耀霖,朱守彪.中国大陆震源机制深度变化反映的地壳-地幔流变特征[J].地球物理学报,2003,46(3):359-365. 被引量:48
  • 7石耀霖,王其允.高喜马拉雅淡色花岗岩形成的热模拟[J].地球物理学报,1997,40(5):667-676. 被引量:17
  • 8Cheng H H, Qiao Y C, Liu C, et al. Extended hybrid pressure and velocity boundary conditions for D3Q27 Lattice Boltzrnann model[J]. Applied Mathematical Modelling, 2012, 36 (5): 2031-2055.
  • 9Zhang K, Li D E, Zhu P P, et al. 3D visualization of the microstructure of Quedius beesoni Cameron using micro-CT [J]. Analytical and Bioanalytical Chemistry, 2010, 397 (6) : 2143-2148.
  • 10Li D E, Zhang K, Zhu P P, etal. 3D configuration of mandibles and controlling muscles in rove beetles based on miero-CT technique[J]. Analytical and Bioanalytieal Chemistry, 2011, 401(3): 817 825.

二级参考文献77

  • 1王建,叶正仁.地幔对流对全球岩石圈应力产生与分布的作用[J].地球物理学报,2005,48(3):584-590. 被引量:23
  • 2沈显杰,杨淑贞,沈继英,张文仁.西藏岩浆岩放射性生热率的实验研究[J].岩石学报,1989,5(4):83-92. 被引量:11
  • 3叶正仁,朱日祥.地幔对流与岩石层板块的相互耦合及影响──(Ⅱ)地幔混合对流理论及其应用[J].地球物理学报,1996,39(1):47-57. 被引量:11
  • 4Piromallo C, Becker T W, Funiciello F, et al. Threedimensional instantaneous mantle flow induced by subduction.Geophys. Res. Lett. , 2006,33,L08304
  • 5Farnetani C G, Richards M A. Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett. , 1995, 136:251-267
  • 6Moore W B, Schubert G, Tackley P. Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science, 1998,279 : 1008- 1011
  • 7Lenardic A, Moresi L N, Muhlhaus H. Longevity and stability of cratonic lithosphere= insights from numerical simulations of coupled mantle convection and continental tectonics. J. Geophys. Res. , 2003,108(B6):2303
  • 8Thienen P V, Van den Berg A P. Interaction between smallscale mantle diapers and a continental root. Geochem. Geophys. Geosyst. , 2003,4(2) : 1-31
  • 9Schmeling H, Morra G. Mantle flow and the evolution of the lithosphere. Phys. Earth Planet. Inter. , 1993,79(1-2) : 241- 267
  • 10Becker T W, O'Connell R J. Lithospheric stresses caused by mantle convection: the role of plate rheology (abstract). AGU Fall Meeting, 2001, T12C-0921

共引文献68

同被引文献62

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部