期刊文献+

基于CUDA加速的自适应窗口匹配算法

Stereo Matching Algorithm by CUDA-Accelerated Adaptive Window
下载PDF
导出
摘要 通过双目立体视觉计算视差与深度是三维重建、虚实交互等多种应用的重要基础,基于窗口的自适应匹配算法准确度高,但计算复杂,难以应用于实时系统中。为提高算法效率,提出基于CUDA加速的自适应窗口匹配算法,根据颜色相关性与几何近似性计算中心像素点之间的匹配程度,利用GPU的流多处理器和共享显存,将搜索窗口匹配核函数分配到多个并行执行的线程中,各个像素点的视差值并行计算,减少计算时间。对国际标准数据集图像的实验结果表明该算法在保证较好的匹配精度的同时,计算效率显著提高。 Disparity and depth computation through binocular vision is very important in multiple applications including three dimensional reconstruction and virtual-reality interaction. Window-based adaptive correspondence algorithms have high accuracy as also as high computation complexity, so they can hardly be applied to real-time systems. In order to improve the efficiency, a stereo matching algorithm was proposed by" CUDA-accelerated adaptive window. It made use of color correspondence and geometric similarity to calculate the matching degree between central pixels. Using stream multiple processors and shared memory of GPU, the kernel functions of window correspondence were allocated to multiple threads which were conducted in parallel and the disparities of each pixel were calculated independently to reduce the computation time. Experiments on the international standard image sets show that the algorithm has greatly enhanced the efficiency while keeping good matching precision.
作者 张淑军
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第9期2104-2108,共5页 Journal of System Simulation
基金 国家自然科学基金(60903064) 山东省自然科学基金(ZR2011FQ003)
关键词 CUDA 双目视觉 立体匹配 并行加速 CUDA binocular vision stereo matching parallel acceleration
  • 相关文献

参考文献10

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense two frame stereo correspondence algorithms [J]. International Journal of Computer Vision (S0920-5691), 2002, 47(1/2/3): 7-42.
  • 2Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828 1), 2006, 28(4): 650-656.
  • 3Yoon K J, Kweon I S. Locally adaptive support-weight approach for visual correspondence search [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). USA: IEEE, 2005, 2: 924-931.
  • 4Veksler O. Stereo matching by compact windows via minimum ratio cycle[C]// Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada. British Columbia, Canada: IEEE Computer Society, 2001: 540- 547.
  • 5Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: Theory and experiment [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1994, 16(9): 920-932.
  • 6翟振刚,陆耀,赵红.利用块几何约束及视差概率的立体匹配算法[J].软件学报,2010,21(11):2985-2998. 被引量:4
  • 7伍春洪,付国亮.一种基于图像分割及邻域限制与放松的立体匹配方法[J].计算机学报,2011,34(4):755-760. 被引量:11
  • 8Shujun Zhang, Jianbo Zhang, Yun Liu. A Window-Based Adaptive Correspondence Search Algorithm Using Mean Shift and Disparity Estimation [J]. The International Journal of Virtual Reality (S1081-1451), 2011, 10(3): 73-79.
  • 9Nickolls J. Scalable Parallel Programming with CUDA [J]. ACM Queue (S 1542-7730), 2008, 6(2): 40-53.
  • 10NVIDIA CUDA Library by Doxygen. NVIDIA CUDA Reference Manual [EB/OL]. (2009) [2013-06-07]. http://www, nvidia, com.

二级参考文献3

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部