期刊文献+

ON CONVERGENCE PROPERTY OF THE LANCZOS METHOD FOR SOLVING A COMPLEX SHIFTED HERMITIAN LINEAR SYSTEM

ON CONVERGENCE PROPERTY OF THE LANCZOS METHOD FOR SOLVING A COMPLEX SHIFTED HERMITIAN LINEAR SYSTEM
原文传递
导出
摘要 We discuss the convergence property of the Lanczos method for solving a complex shifted Hermitian linear system (αI + H)x = f. By showing the colinear coefficient of two system's residuals, our convergence analysis reveals that under the condition Re(α) + λmin(H) 〉 0, the method converges faster than that for the real shifted Hermitian linear system (Re(α)I + H)x = f. Numerical experiments verify such convergence property. We discuss the convergence property of the Lanczos method for solving a complex shifted Hermitian linear system (αI + H)x = f. By showing the colinear coefficient of two system's residuals, our convergence analysis reveals that under the condition Re(α) + λmin(H) 〉 0, the method converges faster than that for the real shifted Hermitian linear system (Re(α)I + H)x = f. Numerical experiments verify such convergence property.
作者 Guiding Gu
出处 《Journal of Computational Mathematics》 SCIE CSCD 2013年第3期326-334,共9页 计算数学(英文)
关键词 Hermitian matrix Complex shifted linear system Lanczos method. Hermitian matrix, Complex shifted linear system, Lanczos method.
  • 相关文献

参考文献2

二级参考文献5

  • 1G.-D. Gu,X.-L. Zhou,Lei Lin.A FLEXIBLE PRECONDITIONED ARNOLDI METHOD FOR SHIFTED LINEAR SYSTEMS[J].Journal of Computational Mathematics,2007,25(5):522-530. 被引量:1
  • 2Zhong‐Zhi Bai.A class of modified block SSOR preconditioners for symmetric positive definite systems of linear equations[J].Advances in Computational Mathematics.1999(2)
  • 3Gene H. Golub,Michael L. Overton.The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems[J].Numerische Mathematik.1988(5)
  • 4R. A. Nicolaides.On the local convergence of certain two step terative procedures[J].Numerische Mathematik.1975(2)
  • 5O. Axelsson.A generalized SSOR method[J].BIT.1972(4)

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部