摘要
We discuss the convergence property of the Lanczos method for solving a complex shifted Hermitian linear system (αI + H)x = f. By showing the colinear coefficient of two system's residuals, our convergence analysis reveals that under the condition Re(α) + λmin(H) 〉 0, the method converges faster than that for the real shifted Hermitian linear system (Re(α)I + H)x = f. Numerical experiments verify such convergence property.
We discuss the convergence property of the Lanczos method for solving a complex shifted Hermitian linear system (αI + H)x = f. By showing the colinear coefficient of two system's residuals, our convergence analysis reveals that under the condition Re(α) + λmin(H) 〉 0, the method converges faster than that for the real shifted Hermitian linear system (Re(α)I + H)x = f. Numerical experiments verify such convergence property.