期刊文献+

Non-stationary Subdivision for Exponential Polynomials Reproduction 被引量:1

Non-stationary Subdivision for Exponential Polynomials Reproduction
原文传递
导出
摘要 In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed. In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期567-578,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.60873181 and No.u0935004)
关键词 Non-stationary subdivision exponential polynomials difference equation tension control Non-stationary subdivision exponential polynomials difference equation tension control
  • 相关文献

参考文献2

二级参考文献11

  • 1Dubuc S.Interpolation through an iterative scheme[J].Journal of Mathematical Analysis and Applications,1986,114(1):185-204
  • 2Dyn N,Gregory J A,Levin D.A 4-point interpolatory subdivision scheme for curve design[J].Computer Aided Geometric Design,1987,4(4):257-268
  • 3Morin G,Warren J,Weimer H.A subdivision scheme for surfaces of revolution[J].Computer Aided Geometric Design,2001,18(5):483-502
  • 4Chalmoviansky P,Jüttler B.A non-linear circle-preserving subdivision scheme[J].Advance in Computational Mathematics,2007,27(4):375-400
  • 5Beccari C,Casciola G,Romani L.A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics[J].Computer Aided Geometric Design,2007,24(1):1-9
  • 6Jena M K,Shunmugaraj P,Das P J.A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes[J].Computer Aided Geometric Design,2003,20(2):61-77
  • 7Merrien J L.A family of Hermite interpolants by bisection algorithms[J].Numerical Algorithms,1992,2(2):187-200
  • 8Dyn N,Levin D.Analysis of asymptotically equivalent binary subdivision schemes[J].Journal of Mathematics Analysis and Applications,1995,193(2):594-621
  • 9Dyn N,Levin D.Analysis of Hermite interpolatory subdivision schemes[C]//Spline Functions and the Theory of Waveletes,CRM Proceedings and Lecture Notes 18,Montréal,1999:105-113
  • 10Dyn N,Levin D.Analysis of Hermite-type subdivision schemes[M]//Chui C K,Schumaker L L.Approximation Theory VIII,Vol 2.Singapore:World Scientific Publishing Co.,Inc.,1995:117-124

共引文献235

同被引文献12

  • 1郑红婵,叶正麟,赵红星.双参数四点细分法及其性质[J].计算机辅助设计与图形学学报,2004,16(8):1140-1145. 被引量:30
  • 2Dyn N. Subdivision schemes in CAGD[A]. Light W (eds.), Advances in Numerical Analysis, Vol. 2, Oxford : Clarendon Press, 1992 : 36 - 104.
  • 3Dyn N,Floater M S, Hormann K. A C2 four-point subdivision scheme with fourth order accuracy and its extensions [A]. Daehlen M, Morken K, Schumaker L L (eds.), Mathematical Methods for Curves and Surfaces: Tromso 2004, Nashboro Press, Brentwood, 2005 : 145 - 156.
  • 4Hassan M F, Dodgson N A. Ternary and three-point univariate subdivision schemes[A]. Cohen A, Merrien J L, Schumaker L L (eds.), Curve and Surface Fitting: Saint-Malo 2002, Nashboro Press, Brentwood, 2003:199-208.
  • 5Hassan M F,Ivrissimitzis I P,Dodgson N A, Sabin M A. An interpolating 4-point C2 ternary stationary subdivision scheme[J]. Computer Aided Geometric Design, 2002,19 : 1- 18.
  • 6Siddiqi S S, Rehan K. A ternary three-point scheme for curve designing[J]. International Journal of Computer Mathematics, 2010,87(8) : 1709- 1715.
  • 7Siddiqi S S, Ahmad N. A new five-point approximating subdivision scheme[J]. International Journal of Computer Mathematics, 2008,85(1) :65-72.
  • 8Siddiqi S S, Rehan K. A stationary ternary C4 scheme for curve sketching[J]. European Journal of Scientific Research, 2009,30 (3) : 380 - 388.
  • 9Siddiqi S S, Rehan K. Modified form of binary and ternary S-point subdivision schemes[J]. Applied Mathematics and Computation, 2010,216 : 970- 982.
  • 10Ko K P, Lee B G, Yoon G J. A ternary 4-point approximating subdivision scheme[J]. Applied Mathematics and Computation, 2007,190 : 1563- 1573.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部