期刊文献+

多元切比雪夫神经网络及其快速权值确定算法 被引量:1

Multivariate Chebyshev neural network and quick learning algorithm
下载PDF
导出
摘要 与传统的多层感知器模型相比,切比雪夫神经网络具有收敛速度快,复杂度低,泛化能力强等优点,但是,其研究最为广泛的一元切比雪夫神经网络在解决实际应用中的多元问题时存在着很大局限。鉴于此,对一元切比雪夫神经网络进行扩展,提出了多元切比雪夫神经网络模型,并在切比雪夫多项式正交性的基础上给出了快速权值确定算法。仿真实验证明,相对于传统多层感知器神经网络,该方法在计算精度和计算速度等方面都存在明显优势。 Compared with the traditional multi-layer perceptron model, Chebyshev neural network has fast convergence, low complexity and generalization ability advantages. However, the one variable Chebyshev neural network to solve multivariate problems in the practical application is great limitations. For this problem, the paper extends and proposes multivariate Cheby- shev neural network model and gives fast weight determination algorithm which base on Chebyshev polynomials orthogonal. The simulation results show that compared to traditional multi-layer perceptron neural network, the method has obvious advan-tages in the calculation accuracy and computing speed.
出处 《计算机工程与应用》 CSCD 2013年第13期36-39,109,共5页 Computer Engineering and Applications
基金 国家自然科学青年基金(No.60403009) 中央高校基本科研业务费资助(No.CDJZR10180021)
关键词 神经网络 切比雪夫多项式 多元函数 权值快速计算 neural networks Chebyshev polynomial multivariate function quick calculation of the weights
  • 相关文献

参考文献10

  • 1Namatame A, Ueda N.Pattern classification with Chebyshev neural networks[J].International Journal of Neural Networks, 1992,3:23-31.
  • 2Purwar S, Kar I N, Jha A N.On-line system identification of complex systems using Chebyshev[J].Neural Networks Applied Soft Computing, 2007,7 : 364-372.
  • 3Akritas P, Antoniou I, Ivanov V V.Identification and predic- tion of discrete chaotic maps applying a Chebyshev neural network chaos[J].Solitons and Fractals,2000, 11 : 337-344.
  • 4张代远.基于分布式并行计算的神经网络算法[J].系统工程与电子技术,2010,32(2):386-391. 被引量:9
  • 5Shailc F A, Purwar S, Pratap B.Real-time implementation of Chebyshev neural network observer for twin rotor control sys- tem[J].Expert Systems with Applications, 2011,38 : 13043-13049.
  • 6Lee T T, Jeng J T.The Chebyshev-polynomials-based unified model neural networks for function approximation[J].IEEE Transactions on Systems Man and Cybernetics: Part B Cyber- netics, 1998,28(6).
  • 7张雨浓,李巍,蔡炳煌,李克讷.切比雪夫正交基神经网络的权值直接确定法[J].计算机仿真,2009,26(1):157-161. 被引量:15
  • 8张代远.基于广义Чебышев多项式的新型神经网络算法[J].系统工程与电子技术,2008,30(11):2274-2279. 被引量:2
  • 9Cortes C, Vapnic V.Support vector networks[J].Machine Learning, 1995,20: 273-297.
  • 10Haykin S.Neural networks and learning machines[M].北京:机械工业出版社,2009.

二级参考文献21

  • 1蒲春,孙政顺,赵世敏.Matlab神经网络工具箱BP算法比较[J].计算机仿真,2006,23(5):142-144. 被引量:68
  • 2喻昕,吴敏,王国军.一种新的交叉立方体最短路径路由算法[J].计算机学报,2007,30(4):615-621. 被引量:6
  • 3Rumelhart D E, et al. Learning representation by back-propagationerrors[J].Nature, 1986, 323: 533-536.
  • 4Ergezinger S, Tomsen E. An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer[J]. IEEE Trans. on Neural Networks, 1995, 6(1) : 31 - 42.
  • 5Ampazis N, Perantonis S J. Two highly efficient second order algorithms for training feedforward networks[J]. IEEE Trans. on Neural Networks, 2002, 13(5) : 1064 - 1073.
  • 6Jesus O D, Hagan M T. Backpropagation algorithms for a broad class of dynamic networks[J]. IEEE Trans. on Neural Networks, 2007, 18(1):14-27.
  • 7Guarnieri S, et al. Multilayer feedforwand networks with adaptive spline activation function[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 672-683.
  • 8Igelnik B, Parikh N. Kolmogorov's spline network[J]. IEEE Trans. on Neural Networks, 2003, 14(4) : 725 - 733.
  • 9Y N Zhang, J Wang. Recurrent neural networks for nonlinear out put regulation[J]. Automatica, 2001, 37(8) : 1161 -1173.
  • 10Y N Zhang, S S Ge, T H LEE. A unified quadratic - programming - based dynamical system approach to joint torque optimization of physically constrained redundant manipulators[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34(5) : 2126 - 2132.

共引文献23

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部