摘要
利用Shamir(t,n)门限方案、有限域上的模运算和Lagrange插值多项式提出了一个可验证的多秘密共享门限方案。该方案中,每一个密钥对应的极小访问结构是一个门限访问结构,这样的访问结构实现了在重构阶段可重构部分密钥,而且重构的参与者越多可重构的密钥就越多;与以前的可验证的(t,n)门限多秘密共享方案相比,该方案更具有实用性。
A threshold verifiable multi-secret sharing scheme is proposed, which is based on Shamir (t, n)-threshold scheme, modular arithmetic over finite field and the Lagrange interpolation polynomial. The minimum access structure of each secret is a threshold access structure. This access structure realizes that a part of secrets is recovered in the reconstruction phase, and the more participants there are, the more secrets can be recovered. Compared with the previous verifiable (t, n)-threshold multi-secret sharing scheme, this scheme is more oractical.
出处
《计算机工程与应用》
CSCD
2013年第13期65-67,共3页
Computer Engineering and Applications
基金
国家自然科学基金(No.60873119)
关键词
多秘密共享
Shamir(t
n)门限方案
双变量单向函数
离散对数
multi-secret sharing
Shamir (t, n) -threshold secret sharing scheme
two-variable one-way function
discrete loga-rithm problem