期刊文献+

一个可验证的多秘密共享门限方案 被引量:4

Threshold verifiable multi-secret sharing scheme
下载PDF
导出
摘要 利用Shamir(t,n)门限方案、有限域上的模运算和Lagrange插值多项式提出了一个可验证的多秘密共享门限方案。该方案中,每一个密钥对应的极小访问结构是一个门限访问结构,这样的访问结构实现了在重构阶段可重构部分密钥,而且重构的参与者越多可重构的密钥就越多;与以前的可验证的(t,n)门限多秘密共享方案相比,该方案更具有实用性。 A threshold verifiable multi-secret sharing scheme is proposed, which is based on Shamir (t, n)-threshold scheme, modular arithmetic over finite field and the Lagrange interpolation polynomial. The minimum access structure of each secret is a threshold access structure. This access structure realizes that a part of secrets is recovered in the reconstruction phase, and the more participants there are, the more secrets can be recovered. Compared with the previous verifiable (t, n)-threshold multi-secret sharing scheme, this scheme is more oractical.
出处 《计算机工程与应用》 CSCD 2013年第13期65-67,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60873119)
关键词 多秘密共享 Shamir(t n)门限方案 双变量单向函数 离散对数 multi-secret sharing Shamir (t, n) -threshold secret sharing scheme two-variable one-way function discrete loga-rithm problem
  • 相关文献

参考文献15

  • 1Shamir A.How to share a secret[J].Communication of the ACM, 1979,22(11):612-613.
  • 2Blakley G.Safeguarding cryptographic keys[C]//Proc AFIPS 1979 Natl Conf,New York, USA, 1979:313-317.
  • 3Chor B, Goldwasser S, Micali S, et al.Verifiable secret sharing and achieving simultaneity in the presence of faults[C]IIPro?ceeding of 26th IEEE Symposium on Foundations of Com?puter Science, 1985: 383-395.
  • 4Feldman A.A practical scheme for non-interactive verifiable secret sharing[C]IIProceedings of 28th IEEE Symposium on Foundations of Computer Science, 1987 :427-437.
  • 5Pedersen T P.Non-interactive and information theoretic secure verifiable secret sharing[C]IIProceedings of the CRYPTO' 91, 1991: 129-139.
  • 6Jackson W A, Martin K M, 0' Keefe C M.On sharing many secrets[C]IIProceedings of the Asiacrypt' 94,1994: 42-54.
  • 7Chien H Y, Jan J K, Tseng Y M.A practical (t, n ) multi-secret sharing scheme[J].IEICE Transactions on Fundamentals, 2000, E83-A( 12) :2672-2675.
  • 8Yang C, Chang T, Hwang M.A (t, n ) multis-ecret sharing scheme[J].Applied Mathematics and Computation, 2004, 151: 483-490.
  • 9Pang L, Wang Y.A new (t, n ) multi-secret sharing scheme based on Shamir's secret sharing[J].Applied Mathematics and Com?putation, 2005,167: 840-848.
  • 10Ham L.Efficient sharing (broad casting) of multiple secrets[J]. lEE Proc Comput Digit Tech, 1995,142(3):237-240.

同被引文献46

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部