期刊文献+

基于流形学习的异常检测算法研究 被引量:1

Manifold learning-based anomaly detection algorithm
下载PDF
导出
摘要 化探异常识别是成矿预测的重要依据。化探异常识别本质上是一不均衡数据的分类问题。异常识别过程中面临的主要问题是高维数据的处理问题,流形学习通过非线性降维方法实现维数约简。提出了一种基于流形学习的异常识别算法,通过流形学习进行维数约简,结合AdaCost技术,以改善不平衡数据的分类性能。以某锡铜多金属矿床的数据为研究对象进行仿真实验,实验结果表明该算法能够更准确地圈定区域化探异常,为成矿预测与评价提供了新的解决途径。 Anomaly detection has important significance in many fields. Essentially speaking, the recognition of geochemical anomalies is the problem of imbalanced data classification. The main problems faced by anomaly identification is the processing problems of high-dimensional data, manifold learning is a nonlinear dimensionality reduction method that can reasonably reduce the data dimension. Therefore this paper proposes an anomaly detection algorithm based on the manifold learning, through mani- fold learning to achieve the dimension reduction, the new algorithm combines AdaCost technology of integrated learning, to im- prove classification performance. The new algorithm is based on the simulation experiment on the research objection of polyme- tallic deposits such as tin and copper from Gejiu, Yunnan province. The experimental results show that predicted results for the new algorithm delineating regional geochemical anomalies are better than traditional methods, which can more accurately identify the forming-ore abnormality.
出处 《计算机工程与应用》 CSCD 2013年第13期105-109,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.40972206) 中央高校基本科研业务费专项资金资助项目(No.1323520909)
关键词 异常检测分类 不均衡数据 流形学习 代价敏感学习 anomaly detection unbalanced data manifold leaming cost-sensitive leaming
  • 相关文献

参考文献14

  • 1Probost F.Machine learning imbalance data sets 101[C]//Pro- ceedings of the AAAI 2000 Workshop on Imbalanced Data Sets, 2002.
  • 2Jolliffe I T.Principal component analysis[M].New York:Springer,2002.
  • 3宋明辉,潘军,邢立新.东昆仑祁漫塔格地区找矿预测遥感研究[J].吉林大学学报(地球科学版),2006,36(S1):210-213. 被引量:6
  • 4郭云开,董胜光,彭悦.基于Curvelet变换和PCA相结合的方法提取地质构造信息[J].测绘通报,2010(4):15-18. 被引量:3
  • 5王瑞国,于涛,李军,苏新旭.内蒙古锡林郭勒盟布鲁特地区遥感矿化信息提取及应用[J].测绘与空间地理信息,2010,33(4):73-76. 被引量:1
  • 6de Silva V,Tenenbaum J B.Global versus local methods in nonlinear dimensionality reduction[C]//Proceedings of the Conference on Neural Information Processing Systems, 2003: 705-712.
  • 7Fan W, Stolfo S J, Zhang J, et al.AdaCost: miss-classifica- tion cost-sensitive boosting[C]//Proceedings of the 16th Inter- national Conference on Machine Learning, 1999:97-105.
  • 8Roweis Sam T, Saul Lawrence K.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000, 290 (22) :2323-2326.
  • 9Tenenbaum J B, Silva V, Langford J C.A global geometirc framework for nonlinear dimensionality reduction[J].Science, 2000,290(22) :2319-2323.
  • 10Belkin M, Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation, 2003,15(6) : 1373-1396.

二级参考文献40

共引文献13

同被引文献15

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部