期刊文献+

选择分块SVM电容层析成像改进方法 被引量:3

Improved method of electrical capacitance tomography based on SVM algorithm of choice and segmentation
下载PDF
导出
摘要 针对SVM在处理具有样本集规模大的ECT系统数据时,存在ECT图像重建的成像精度不高和速度慢的问题,采用了选择分块支持向量机CSSVM算法。将ECT系统样本数据构成列数固定的样本矩阵,每个样本作为样本矩阵的行,66个电容值和66个敏感度值作为矩阵的列。该算法将大样本矩阵按照某一成像单元进行选择性分块,并形成多个小样本矩阵,再分别采用SVM算法进行训练和预测,将各个成像单元组合成像。数值实验证明,使用CSSVM新算法比单独使用SVM算法重建图像具有更高的分类准确率和更短的成像时间。 According to Support Vector Machine (SVM) has low training speed and low accuracy to deal with large scale data in Electrical Capacitance Tomography(ECT) system, a new algorithm that combined SVM with the Choice and Segmentation (CS) is presented and it comes into being a new classifier. Data in ECT system composes a data matrix which is fixed matrix column componented of sixty-six capacitance values and sixty-six sensitivity, the samples as its rows.It divides block selectively from large scale samples for one imaging unit. The numerical experiments show that the mixed algorithm can not only improve the accuracy compared to sole SVM, but also shorten time in imaging.
出处 《计算机工程与应用》 CSCD 2013年第13期110-113,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.60572135) 黑龙江省自然科学基金(No.F200505) 黑龙江省教育厅基金(No.12521100) 研究生创新基金(No.HLGYCX2011-015)
关键词 支持向量机 选择分块 电容层析成像 数据预处理 图像重建 Support Vector Machine (SVM) Choice and Segmentation (C S) Electrical Capacitance Tomography (ECT) datapreprocessing image reconstruction
  • 相关文献

参考文献15

  • 1Neumayer M,Zang H,Watzenig D.Current reconstruction algo- rithms in electrical capacitance tomography[J].Lecture Notes in Electrical Engineering, 2011,83 : 65-106.
  • 2Fang W, Cumberbatch E.Matrix properties of data from electrical capacitance tomography[J].Journal of Engineering Mathematics, 2005,51 (2) : 127-146.
  • 3Tuia D,Mufioz-Mari J, Kanevski M.Structured output SVM for remote sensing image classification[J].Journal of Signal Processine Systems. 2010.35 : 213-235.
  • 4吴翔,谭李,陆文凯,张学工.提高超大规模SVM训练计算速度的研究[J].模式识别与人工智能,2003,16(1):46-49. 被引量:10
  • 5Li Y, Qian Y.Intrusion detection based on support vector ma- chine divided up by clusters[C]//Proceedings of the Interna- tional Conference on Computational Intelligence and Indus- trial Application, 2010,3 : 284-286.
  • 6陈蓉,宋俊德.基于SVM分块回归分析的话务量预测模型[J].计算机应用,2008,28(9):2230-2232. 被引量:10
  • 7Lei J, Liu S.An image reconstruction algorithm based on the regularized minimax estimation for electrical capacitance tomography[J].Journal of Mathematical Imaging and Vision, 2011,39(3) :269-291.
  • 8Walavalkar L.Support vector learning for gender classification using audio and visual cues[J].International Journal of Pattern Recognition and Artificial Intelligence, 2003,17 ( 3 ) : 417-439.
  • 9郭红星,余胜生,周敬利,保宗悌.12电极电容层析成象系统电容敏感场的仿真计算[J].系统仿真学报,2000,12(2):172-174. 被引量:3
  • 10Tatsumi K, Kawachi R, Hayashida K.Multiobjective multiclass soft-Margin support vector machine and its solving tech- nique based on Benson's method[C]//Proceedings of the 6th International Conference on Modeling Decisions for Artifical Intelligence, 2009,5861 : 360-371.

二级参考文献33

共引文献152

同被引文献26

  • 1刘浩洋,陈德运,李谋遵.基于支持向量机的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2006,11(4):1-4. 被引量:8
  • 2Datta U,Dyakowski T,Mylvaganam S.Estimation of particulate velocity components in pneumatic transport using pixel based correlation with dual plane ECT[J].Chemical Engineering Journal,2007,130:87-99.
  • 3Marashdeh Q,Warsito W,Fan L S,et al.Dual imaging modality of granular flow based on ECT sensors[J].Granular Matter,2008,10:75-80.
  • 4York T A,Phua T N,Reichelt L,et al.A miniature electrical capacitance tomography[J].Measurement Science and Technology,2006(17):2119-2129.
  • 5Tuia D,Mu?oz-MaríJ,Kanevski M.Structured output SVM for remote sensing image classification[J].Journal of Signal Processing Systems,2010,35:213-235.
  • 6Yang W Q,Peng L H.Image reconstruction algorithms for electrical capacitance tomography measurement[J].Science and Technology,2003,14:1-13.
  • 7Jiang P,Fan S,Xiong T,et al.Investigation on the sensitivity distribution in electrical capacitance tomography system[J].TELKOMNIKA Indonesian Journal of Electrical Engineering,2013,11(12):7088-7093.
  • 8张立丰,胡海涛,陈德运.电容层析成像RBF神经网络图像重建算法的改进[J].哈尔滨理工大学学报,2008,13(6):5-8. 被引量:4
  • 9陈德运,陈宇,王莉莉,于晓洋.基于改进Gauss-Newton的电容层析成像图像重建算法[J].电子学报,2009,37(4):739-743. 被引量:32
  • 10陈德运,李乐天,胡海涛.基于迭代Tikhonov正则化的电容层析成像图像重建[J].哈尔滨理工大学学报,2009,14(2):1-3. 被引量:6

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部