期刊文献+

基于邻域场拉普拉斯混合模型图像分割的研究 被引量:1

Laplacian mixture model with neighborhood field for image segmentation
下载PDF
导出
摘要 针对高斯混合模型(GMM)不能有效处理重尾噪声下图像拖尾情况,提出了基于拉普拉斯(Laplacian)分布的有限混合模型图像分割方法。与标准拉普拉斯混合模型(LMM)将像素点作为孤立个体不同的是,该方法充分考虑了相邻像素点间的空间关系。相较传统混合模型参数估计采用的EM算法,该方法采用梯度下降法优化参数。实验结果表明在处理重尾噪声时,该方法与标准LMM算法和GMM算法相比,鲁棒性更好,分割更精确有效。 Finite mixture model under Laplacian distribution is proposed in order to solve the problem that image segmentation based on Gaussian Mixture Model(GMM) failing to settle tailing situation with heavy-tailed noise, besides, unlike the standard Laplacian Mixture model(LMM) where pixels themselves are considered independent of each other, the proposed method incor- porates the spatial neighborhood relationship ofpixels into the standard LMM. In order to estimate model parameters from obser- vations and instead of utilizing an expectation-maximization algorithm, the gradient method is adopted. The experimental results demonstrate the robustness, accuracy, and effectiveness of the method in comparison with the standard LMM and GMM.
作者 罗雷 王士同
出处 《计算机工程与应用》 CSCD 2013年第13期133-137,244,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61272210)
关键词 拉普拉斯混合模型(LMM) 图像分割 重尾噪声 空间邻域关系 Laplacian Mixture Model (LMM) image segmentation heavy-tailed noise spatial neighborhood relationship
  • 相关文献

参考文献15

  • 1Kim S,Kang M.Multiple-region seg-mentation without super- vision by adaptive global maximum clustering[J].IEEE Trans- actions on Image Processing,2012,21(4): 1600-1612.
  • 2张扬,王士同,韩斌.基于改进模糊聚类算法鲁棒的图像分割[J].中国图象图形学报,2008,13(5):911-917. 被引量:16
  • 3Goncalves H,Goncalves J A,Corte Real L.HAIRS:a method for automatic image registration through histo-gram-based image segmentation[J].Transactions on Image Processing,2011, 20( 3 ) : 776-789.
  • 4Bors A,Pitas G l.Optical flow estimation and moving object segmentation based on median radial basis function network[J]. IEEE Transactions on Image Processing, 1998,7(5 ) : 693-702.
  • 5Mclachlan G J.Peel D.Finite mixture models[M].New York: Wiley, 2000.
  • 6Ji Z, Xia Y, Sun Q, et al.Fuzzy local Gaussian mixture model for brain MR image segmentation[J].IEEE Transactions on Information Technology in Biomedicine,2012,16(3) :339-347. Singh R, Pal B C, Jabr R A.Statistical representation of dis- tribution system loads using gaussion.
  • 7mixture model[J]. IEEE Trans on Power Systems,2010,25(1) :29-37.
  • 8Nguyen T M, Wu Q M.Gaussian-mixture-model-based spatial neighborhood relation-ships for pixel labeling problem[J]. IEEE Transactions on Systems Man and Cybernetics: Part B Cybernetics, 2012,42 ( 1 ) : 193-202.
  • 9Mukherjee A, Sengupta A.Estimating the probability density function of a non-stationary non-Gaussian noise[J].IEEE Trans- actions on Industrial Electronics,2010,57(4) : 1429-1435.
  • 10Wang X, Zhang X.A new Laplacian mixture conditional ran- dom field for image labeling[C]//Proceedings of the IEEE International conference on Acoustics Speech and Signal Processing(ICASSP) ,2010:2118-2121.

二级参考文献22

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2Mukherjee A and Sengupta A.Estimating the probability density function of a nonstationary non-Gaussian noise[J].IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
  • 3Duda R O,Hart P E,and Stork D G.Pattern Classification[M].Wiley-Interscience Publication,2000:20-102.
  • 4Wang Zhi-min and Song Qing.Robust curve clustering based on a multivariate t-distribution model[J].IEEE Transactions on Neural Networks,2010,21(12):1976-1984.
  • 5John S T and Cristianini N.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004:289-325.
  • 6Zhang Yan and Zhang Tao.Kernel-based Bayesian face recognition[C].2009Fifth International Conference on Natural Computation,Tianjin,China,2009,7:568-572.
  • 7Ruiz A and Lopez-de Teruel P E.Nonlinear kernel-based statistical pattern analysis[J].IEEE Transactions on Neural Networks,2001,12(1):16-32.
  • 8Zhao Hai-tao,Yuen Pong-chi,and Kwok J T.A novel incremental principal component analysis and its application for face recognition[J].IEEE Transactions on Systems,Man,and Cybernetics,2006,36(4):873-886.
  • 9Xu Zeng-lin,Huang Kai-zhu,Zhu Jian-ke,et al.A novel kernel-based maximum a posteriori classification method[J].Neural Networks,2009,22(7):977-987.
  • 10Sch lkopf B,Smola A,and Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.

共引文献21

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部