期刊文献+

一种快速的广义噪声聚类算法 被引量:3

Fast generalized noise clustering algorithm
下载PDF
导出
摘要 为解决广义噪声聚类(GNC)算法非常依赖参数和在运行GNC算法前必须运行FCM算法以便计算参数的缺点,在GNC的目标函数和可能聚类算法(PCA)基础上,提出一种快速的广义噪声聚类(FGNC)算法。FGNC算法通过一种非参数化方法计算GNC目标函数中的参数,因而FGNC算法不依赖参数并且聚类速度快于GNC算法。对人工含噪声数据集和两个实际数据集进行仿真实验,实验结果表明FGNC算法能很好地处理含噪声数据,具有聚类中心更接近真实聚类中心,聚类准确性高,聚类时间少的优良性能。 A Fast Generalized Noise Clustering (FGNC) based Possibilistic Clustering Algorithm(PCA) is proposed to deal with on Generalized Noise Clustering (GNC) objective function and the shortcoming of GNC algorithm depend heavily on parameters, and FCM must be performed until termination to calculate the parameters for GNC algorithm. With a nonparametric method, FGNC calculates the parameters in GNC objective function. So FGNC algorithm does not depend on the parameters that GNC holds and clusters data faster than GNC algorithm. Experiment and simulation on two man-made data sets and two real data sets show FGNC can deal with noisy data well, cluster centers are closer to real ones, clustering accuracy is improved and clustering time is reduced.
出处 《计算机工程与应用》 CSCD 2013年第13期145-148,共4页 Computer Engineering and Applications
基金 安徽省高校省级优秀青年人才基金(No.2012SQRL251) 安徽省高校省级科学研究项目(No.KJ2012Z302)
关键词 模糊C-均值聚类 可能C-均值聚类 广义噪声聚类 Fuzzy C-Means (FCM) Possibilistic C-Means (PCM) Generalized Noise Clustering (GNC)
  • 相关文献

参考文献2

二级参考文献23

  • 1J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms [ M].New York:Plenum Press, 1981.
  • 2J C Bezdek, J Keller, R Krisnapuram, N R Pal. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing [ M]. Kluwer Academic, 1999.
  • 3R Krishnapuram, J Keller. A possibilistic approach to clustering [J].IEEE Trans Fuzzy Systems, 1993,1 ( 2 ) : 98 - 110.
  • 4M Bami, V Cappellini, A Mecocci. Comments on "A possibilistic approach to clustering" [ J ]. IEEE Trans Fuzzy Systems, 1996,4(3):393 - 396.
  • 5N R Pal, K Pal, J C Bezdek. A possibilistic fuzzy c-means clustering algorithm [J].IEEE Trans Fuzzy Systems,2005,13(4) :517 - 530.
  • 6Pal N R,Pal K, Bezdek J C.A new hybrid C-means clustering model [A ]. In Proceedings of the IEEE International Conference On Fuzzy Systems [C]. Piscataway: IEEE Press, 2004. 179 - 184.
  • 7Krishnapuram R, Keller J. The possibilisfic c-means algorithm: Insights and Recommendations [J].IEEE Transaction Fuzzy Systems, 1996,4(3) :385 - 393.
  • 8Wu Xiao-hong, Zhou Jian-jiang. Allied fuzzy c-means clustering model [ J ]. Transaction of Nanjing University of Aeronautics and Aslronautics, 2006,23 (3) :208 - 213.
  • 9M S Yang, K L Wu. unsupervised possibilistic clustering [ J ]. Pattern Recognition, 2006,39 (1) :5 - 21.
  • 10Y Fukuyama,M Sugeno.A new method of choosing the number of clusters for the fuzzy c-means method [A]. In Proc. of the 5th Fuzzy Systems Symposium [ C]. Japan: IEEE Press, 1989.247 - 250.

共引文献35

同被引文献23

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 2Chen Q, Zhang D, Pan W, et al. Trends in Food Science Technology, 2015, 43(1): 63.
  • 3Huang X, Zou X, Zhao J, et al. Food Chemistry, 2014, 164: 536.
  • 4Ren G, Wang S, Ning J, et al. Food Research International, 2013, 53(2) : 822.
  • 5He W, Zhou J, Cheng H, et al. Spectrochimica Aeta Part A: Molecular and Biomolecular Spectroscopy, 2012, 86:399.
  • 6Xiong C, Liu C, Pan W, et al. Food Chemistry, 2015, 176(1): 130.
  • 7Kannan S R, Devi R, Ramathilagam S, et al. Computers in Biology and Medicine, 2013, 43(2) : 73.
  • 8Sirisomboon P, Tanaka M, Kojima T, et al. Journal of Food Engineering, 2012, 112(3): 218.
  • 9Brito A L B, Brito L R, Honorato F A, et al. Food Research International, 2013, 51(2) : 924.
  • 10Wu X H, Wu B, Sun J, et al. Applied Mathematical Modelling, 2011, 35.- 4?90.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部