期刊文献+

氦等离子体前处理对多晶硅薄膜性能的影响

Influence of Helium plasma pre-treatment on properties of polycrystalline silicon films
下载PDF
导出
摘要 采用微波电子回旋共振等离子体增强磁控溅射(microwave electron cyclotron resonance plasma-enhanced magnetron sputtering,ECR-PEMS)和电子回旋共振等离子体辅助化学气相沉积(microwave electroncyclotron resonance chemical vapor deposition,ECR-CVD)技术,分别在单晶硅片(100)基底上低温制备了多晶硅薄膜.采用拉曼光谱仪、X射线衍射仪以及原子力显微镜对薄膜微观结构及表面形貌进行表征,研究纯氦等离子体基底前期处理对所沉积薄膜性能的影响.结果表明,氦等离子体前处理技术能大幅提高多晶硅薄膜结晶度和颗粒尺寸,明显改善ECR-CVD法所得多晶硅薄膜的微观结构特性和表面形貌. Polycrystalline silicon thin films deposited on p-type(100) silicon wafer substrates were prepared by means of microwave electron cyclotron resonance plasma-enhanced magnetron sputtering(ECR-PEMS) and microwave electron cyclotron resonance chemical vapor deposition(ECR-CVD) at low temperatures in the present work.To characterize the microstructure and surface morphology of the films,the Raman spectroscopy,X-ray diffraction and atomic force microscopy were used.The study focuses on the effect of pure helium plasma substrate pre-treatment on the deposited film properties.The results show that the film crystallinity and grain size are obviously enhanced by the helium plasma pre-treatment in both deposition processes.At the same time,the microstructure and surface morphology of polycrystalline silicon film with ECR-CVD are improved.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2013年第4期398-403,共6页 Journal of Shenzhen University(Science and Engineering)
基金 广东高校优秀青年创新人才培育计划资助项目(2012LYM_0115) 深圳市科技基础研究资助项目(JC201105170703A)~~
关键词 等离子体物理 多晶硅薄膜 电子回旋共振 等离子体增强 氦等离子体 磁控溅射 化学气相沉积 薄膜结晶度 纳米材料 plasma polycrystalline silicon thin films electron cyclotron resonance plasma enhanced helium plasma magnetron sputtering chemical vapor deposition film crystallinity nanomaterials
  • 相关文献

参考文献24

  • 1Rath J K. Low temperature polycrystalline silicon: a re- view on deposition, physical properties and solar cell ap- plications [ J ]. Photovohaics and Photoactive Materials : Properties, Technology and Applications, 2003, 76 (4) : 431-487.
  • 2Chung Y B, Park H K, Lee D K, et al. Low temperature deposition of crystalline silicon on glass by hot wire chemi- cal vapor deposition [ J ]. Journal of Crystal Growth, 2011, 327(1): 57-62.
  • 3Wang Z, Cao J, Fu C Q, et al. Preparation of polycrys- talline silicon thin film for solar cells on glass by almni- num-induced layer exchange [ J ]. Surface and Coatings Technology, 2012, 228(S1 ): S155-S158.
  • 4Wu B R, Lo S Y, Wuu D S, et al. Direct growth of large grain polycrystalline silicon films on aluminum-in- duced crystallization seed layer using hot-wire chemical va- por deposition [J]. Thin Solid Films, 2012, 520(18) : 5860-5866.
  • 5Delmdahl R. The excimer laser: precision engineering [J]. Nature Photonics, 2010, 4(5): 286-287.
  • 6Jang J, Oh J Y, Kim S K, et al. Electric-field-en- hanced crystallization of amorphous silicon [J].Nature, 1998, 395(6701) : 481-483.
  • 7Englander O, Christensen D, Lin L. Local synthesis of sil- icon nanowires and carbon nanotubes on microbridges [ J]. Applied Physics Letters, 2003, 82 (26) : 4797- 4799.
  • 8Englander O, Christensen D, Kim J, et al. Electric- field assisted growth and self-assembly of intrinsic silicon nanowires [J]. Nano Letters, 2005, 5(4): 705-708.
  • 9Kawano T, Christensen D, Chen S, et al. Formation and characterization of silicon/carbon nanotube/silicon heterojunctions by local synthesis and assembly [ J]. Ap- plied Physics Letters, 2006, 89 (16): 163510-1- 163510-3.
  • 10Dittmer S, Mudgal S, Nerushev O A, et al. Local heating method for growth of aligned carbon nanotubes at low ambient temperature [ J ]. Low Temperature Physics, 2008, 34(10): 834-837.

二级参考文献18

  • 1Lee T, Min N K, Lee H W, et al. 2009, Thin Solid Films, 517:3999.
  • 2Liu E, Kwek H W. 2008, Thin Solid Films, 516:5201.
  • 3Yap S S, Yong T K, Tou T Y. 2009, Thin Solid Films, 517:5311.
  • 4Bewilogua K, Wittorf R, Thomsen H, et al. 2004, Thin Solid Films, 447 - 448:142.
  • 5Liu Dongping, Liu Yanhong, Chen Baoxiang. 2006, Plasma Sci. Technol., 8:701.
  • 6Lai Xiuqiong, Chert Ju.fang, Fu Silie, et al. 2007, Plasma Sci. Technol., 9:444.
  • 7Trakhtenberg I S, Plotnikov S A, Vykhodets V B, et al. 1996, Diamond and Related Materials, 5:943.
  • 8Paterson M J. 1998, Diamond and Related Materials, 7:908.
  • 9Grigonis A, Sablinskas V, Silinskas M, et al. 2004, Vacuum, 75:261.
  • 10Hsu Jiongshiun, Tzeng Shinnshyong, Wu Yingjie. 2009, Vacuum, 83:622.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部