期刊文献+

应用剂量梯度理论确定射线野参数 被引量:1

Determination of beam parameters by dose gradient analysis
原文传递
导出
摘要 目的 应用剂量梯度理论确定多野治疗方案时每个射线野的权重、楔形板角度及方向。方法 剂量梯度理论指出 ,在X(γ)射线野轴线附近区域内 ,平野的剂量梯度的方向与射线野轴线平行 ;楔形野的剂量梯度的方向与射线野轴线的夹角等于射线野的楔形板角度。对于多野治疗方案 ,为保证靶区剂量均匀 ,靶区范围内任意点总的剂量梯度必须为零 ,调整射线野权重或调整权重结合加楔形板的方法可使这一要求得到满足。依据这一理论 ,对于 2个野交角、3个野共面、3个野非共面这些情况 ,推导得到计算射线野权重、楔形板角度及方向的公式。结果 对颅内肿瘤的 2个野和 3个野非共面方案进行了设计 ,计算得到的靶区剂量是均匀的。结论 对于 2个野、3个野共面或非共面照射的治疗计划 ,采用上述方法可以直接确定射线野权重、楔形板角度及方向 ,避免了手工多次调整 ;对于 3个野以上共面或非共面情况 ,提出确定射线野权重。 Objective To determine beam weight, wedge angles and wedge orientations by dose gradient analysis when a treatment plan has more than one photon beam. Methods As proposed by Sonntag and Sherouse, the dose gradient of a single open photon beam can be represented by a vector pointing towards the radiation source and parallel to the beam central axis. The effect of adding a wedge to the beam is to introduce a simple transaxial gradient. The dose gradient due to an ensemble of beams is the weighted sum of the constituent beams' individual gradients. The optimization criterion that dose be homogeneous over an irradiated volume is equivalent to the criterion that the magnitude of the dose gradient be zero throughout that volume. Given a fixed ensemble of beams, there are two ways to render the dose gradient zero: (1) To adjust relative beam weights and (or) (2) To add wedges to some beams. Here formulas are derived for calculating beam weights, wedge angles and collimator angles when a treatment plan has two coplanar beams, three coplanar beams or three noncoplanar beams. Results Two treatment plans are tested. One plan has two noncoplanar beams, and the other has three noncoplanar beams. The resulting dose distribution in the target volume is homogenous. Conclusion Through analysis of dose gradient, treatment plans can be improved as compared to those obtained through conventional manual trial and error process and planning time can be much reduced.
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2000年第3期197-201,共5页 Chinese Journal of Radiation Oncology
关键词 剂量梯度理论 权重 楔形板 角度 放射治疗 Dose gradient Beam weight Wedge Treatment planning
  • 相关文献

参考文献3

  • 1胡逸民 林宁 等.楔形板临床应用的进一步探讨[J].中国放射肿瘤学,1988,2:52-55.
  • 2Xing L,Med Phys,1998年,25卷,1858页
  • 3胡逸民,中国放射肿瘤学,1988年,2卷,52页

共引文献2

同被引文献7

  • 1Sherouse GW. A mathematical basis for selection of wedge angle and orientation. Med Phys, 1993, 20:1211-1218.
  • 2Dai J, Zhu Y. Selecting beam weight and wedge filter on the basis of dose gradient analysis. Med Phys, 2000, 27:1746-1752.
  • 3Xing L, Pelizzari C, Kuchnir F. Optimization of relative weights and wedge angles in treatment planning. Med Phys, 1997, 24:215-221.
  • 4Xing L, Hamilton RJ, Pelizzari C, et al. A three-dimensional algorithm for optimizing beam weights and wedge filters. Med Phys, 1998, 25:1858-1865.
  • 5Dai J, Zhu Y, Ji Q. Optimizing beam weights and wedge filters with the concept of the super-omni wedge. Med Phys, 2000, 27:2757-2762.
  • 6Milliken BD, Jamilton HR, Rubin SJ. The omni wedge: a method to produce wedged rields at arbitrary orientation. Med Phys, 1996, 23:337-342.
  • 7Dai J, Zhu Y, Wu X. Verirication of the super-omni wedge concept.Phys Med Biol, 2001, 46:2447-2455.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部