摘要
Pulse-coupled neural network (PCNN) is a novel neural network, which has been widely used in image segmentation. However, there are still some limitations, such as trial-and-error parameter settings and manual selection of the optimal results. This paper puts forward a new method based on the simplified PCNN model for automatic image segmentation. By calculating the un- iformity measure of the corresponding image at each process of iteration, the optimal segmentation result is obtained when the max- imum value of the uniformity measure is achieved. Experimental results show that the proposed method can automatically achieve better segmentation result and has a common adaptability.
Pulse-coupled neural network (PCNN) is a novel neural network, which has been widely used in image segmentation. However, there are still some limitations, such as trial-and-error parameter settings and manual selection of the optimal results. This paper puts forward a new method based on the simplified PCNN model for automatic image segmentation. By calculating the un- iformity measure of the corresponding image at each process of iteration, the optimal segmentation result is obtained when the max- imum value of the uniformity measure is achieved. Experimental results show that the proposed method can automatically achieve better segmentation result and has a common adaptability.
基金
Supported by NSFC(11071270)