期刊文献+

区间多目标线性优化的功效系数求解方法 被引量:2

Efficiency coefficient method to solve interval multi-objective linear optimization problems
下载PDF
导出
摘要 针对工程领域中普遍存在的具有不确定参数的多目标优化问题,提出了一种基于功效系数的区间优化模型及求解方法.通过引入增补变量,将含有区间参数的目标函数化为参数确定的形式.建立以功效系数为基础的评价函数,将原多目标优化问题转化为单目标优化问题,然后分别在区间约束条件的最好情况和最差情况下求解,得到设计变量的最优解区间和目标函数的最优值区间.通过工程算例,与传统概率方法的优化结果相比较,验证了所提出优化模型及方法的有效性. Based on the efficiency coefficients, a new interval model and its correlative method for solving multi-objective optimization problems with uncertain parameters in the engineering field were proposed. A group of supplementary variables were introduced to transform the interval objective functions into the forms with deterministic parameters. In terms of the evaluation function deduced from efficiency coefficients, the o- riginal multi-objective optimization problem was converted into one with a single objective function. The sim- plified model was solved respectively under the best case and worst case of the interval constraints, and then the ranges of optimal solution and optimal values were easily obtained. Two numerical examples were given to demonstrate the effectiveness of proposed model and algorithm by comparing their results with probabilistic method.
作者 王冲 邱志平
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第7期907-911,916,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国防基础科研计划资助项目(A2120110001 B2120110011) 高等学校学科创新引智计划资助项目(B07009) 国家自然科学基金资助项目(90816024 10876100)
关键词 区间参数 多目标优化 功效系数 最优解区间 interval parameters multi-objective optimization efficiency coefficient optimal intervals
  • 相关文献

参考文献10

  • 1方国华,黄显峰.多目标决策理论、方法及其应用[M].北京:科学出版社,2011.
  • 2Abbas M ,Bellahcene F. Cutting plane method for multiple objec- tive stochastic integer linear programming [ J ]. European Journal of Operational Research ,2006,168 ( 3 ) :967-984.
  • 3Lia B D,Iwamura K. Fuzzy programming with fuzzy decisions and fuzzy simulation-based genetic algorithm [ J ]. Fuzzy Sets and Sys- tems ,2001,122:253-262.
  • 4Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to inter- val linear programming[ J]. Fuzzy Sets and Systems ,2001,119 : 129-138.
  • 5Chanas S, Knehta D. Muhiohjeetive programming in optimization of interval objective functions-A generalized approach [ J ]. Euro- pean Journal of Operational Research, 1996,94:594-598.
  • 6Urli B ,Nadeau R. An interactive method to muhi-objeetive linear programming problems with interval coefficients [ J ]. Infor, 1992, 30(2) :127-137.
  • 7Jiang C,Hart X,Liu G P. A nonlinear interval number program- ruing method for uncertain optimization problems [ J ]. European Journal of Operational Research ,2008,188 ( 1 ) : 1 - 13.
  • 8Jiang C, Han X, Liu G P. A sequential nonlinear interval number programming method for uncertain structures [ J ]. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 4250 -4265.
  • 9Tong S C. Interval number and fuzzy number linear program- ruing [ ]]. Fuzzy Sets and Systems,1994,66:301 -306.
  • 10Qiu Zhiping, Wang Xiaojun. Structural anti-optimization with interval design parameters[ J ]. Structural and Muhidisciplinary Optimization ,2010,41 ( 3 ) :397 -406.

共引文献39

同被引文献19

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部