期刊文献+

光合细菌产氢研究进展与问题 被引量:4

Progress and problems of hydrogen production by photosynthetic bacteria
下载PDF
导出
摘要 化石能源的日益枯竭及其长期使用造成了严重的环境污染,寻找清洁的可再生能源成为当前亟待解决的世界性重大课题。光合细菌产氢以其较高的底物转化效率、较高的光能利用率以及能够灵活利用多种小分子有机酸等特点而成为大规模生物产氢的研究热点。文章从光合细菌产氢机理(主要针对光合单位、固氮酶和氢酶的联合产氢机理)、影响光合细菌产氢的各种物理因素和如何提高光合细菌的产氢量等方面,系统介绍了当前国内外光合细菌产氢的最新研究结果及进展,并对该领域研究存在的主要问题及发展趋势进行了简要评述。 Fossil energy is increasingly exhausted, and its long-term use causes serious environmental pollution. So looking for renewable energy has become a universal issue to be solved. Hydrogen production by photosynthetic bacteria is a research focus in large-scale Bio-hydrogen production field due to its higher suhstrate conversion efficiency, better light energy utilization and more flexible in utilization of a wide variety of small molecule organic acids. The article introduced the research progress of hydrogen production by photosynthetic bacteria from hydrogen-producing mechanism (mainly on the photosynthetic unit, nitrogenase and hydrogenase combined system for hydrogen production), effects of physicochemical factors on the production rates and strategies that could improve the hydrogen yield . The main problems and development in the field were also dis- cussed.
出处 《可再生能源》 CAS 北大核心 2013年第9期94-102,共9页 Renewable Energy Resources
关键词 光合细菌 产氢机理 固氮酶 产氢酶 进展与问题 photosynthetic bacteria hydrogen-producing mechanism nitrogenase hydrogenase progress and problems
  • 相关文献

参考文献51

  • 1RE布坎尔,NE吉本斯.伯杰氏细菌鉴定手册[M].北京:北京科学出版社.1984.16-81.
  • 2VAN NIEL CB. Photosynthesis of bacteria [J].Cold Spring Harbor Symposia on Quantitative Biology, 1935(3) : 138-150.
  • 3KOTAY SM,DAS D. Bio-hydrogen as a renewable en- ergy resource e prospects and potentials [J].Hydrogen Energy, 2008,33 ( 1 ) : 258-263.
  • 4KIM DH, KIM MS. Hydrogenase for biological hydrogen production[J].Bioresource technology, 2011,102 (18) : 8423-8431.
  • 5HU XC, RITZ T, DAMJANOVIC A, et al. Photosynthet- ic apparatus of purple bacteria [J].Quarterly Reviews of Biophysics, 2002,35 ( 1 ) : 1-62.
  • 6RITZ T,HU XC,DAMJANOVIC A,et al. Excitons and excitation transfer in the photosynthetic unit of purple bacteria [J].Journal of Luminescence, 1998,76-77 : 310-321.
  • 7王万能,陈国平,胡宗利,李尽哲,何帅.紫色光合细菌捕获太阳能的分子机理[J].应用与环境生物学报,2011,17(1):138-143. 被引量:4
  • 8ZIGMANTAS D,READ EL,MANCAL T,et al. Two- dimensional electronic spectroscopy of the B800 - B820 light-harvesting complex [J].Proeeedings of the Na- tional Academy of Sciences of the United States of America, 2006,103 (34) : 12672-12677.
  • 9HU YL, RIBBE MW.Biosynthesis of Nitrogenase FeMo- co [J].Coordination chemistry reviews,2011,255 : 1218-1224.
  • 10VIGNAIS PM,COLBEAU A,WILLISON JC,et al. Hy- drogenase, nitrogenase, and hydrogen Metabolism in the photosythetie baeteria[J].Advances in microbial physi- ology, 1985,26(2) : 156-234.

二级参考文献48

  • 1Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ, Amesz J. Antenna organisation of Rhodopseudomonas acidophila: A study of the excitation migration. Biochim Biophys Acta, 1991, 1060: 125-131.
  • 2Freer A, Prince S, Sauer K, Papiz M, Lawless A H, McDermott G, Cogdell R, Isaacs NW. Pigment protein interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure, 1996, 4: 449-462.
  • 3Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol, 2007, 189 (21): 7765-7773.
  • 4Iustman LJ, Pucheu NL, Kerber NL, Vandekerckhove J, Tadros MH, Garcia AF. Phosphorylation of LHI ? during membrane synthesis in the photosynthetic bacterium Rhodovulum sulfidophilum. Current Microbiol, 2001, 42: 323-329.
  • 5Schubert A , Stenstam A, Beenken WJD, Herek JL, Cogdell R, Pullerits T, Sundstrom V. In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. Biophys J, 2004, 86: 2363-2373.
  • 6Herek JL, Fraser N J, Pullerits T, Martinsson P, Polívka T, Scheer H, Cogdell RJ, Sundstr?m V. B800 -> B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. Biophys J, 2000, 78: 2590-2596.
  • 7Fowler GJS, Visschers RW, Grief GG, van Grondeller R, Hunter CN. Genetically modified photosynthetic antenna complexes with blue-shifted absorbance bands. Nature, 1992, 355: 848-850.
  • 8Saga Y, Tamiaki H. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosci & Bbioeng, 2006, 102: 118-123.
  • 9Masuda S, Tomida Y, Ohta H, Takamiya K. The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUFdomain that controls AppA activity. J Mol Biol, 2007, 368 (5): 1223-1230.
  • 10Han Y, Braatsch S, Osterloh L, Klug G. A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Nat Acad Sci, 2004, 101: 12306-12311.

共引文献3

同被引文献41

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部