期刊文献+

常微分方程近似解的LS-SVM改进求法 被引量:7

IMPROVED METHOD TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS APPROXIMATE SOLUTIONS BASED ON LS-SVMS
原文传递
导出
摘要 提出一种基于最小二乘支持向量机(LS-SVMs)的求解常微分方程近似解的改进方法.该方法首先通过离散计算域,将常微分方程转换为有约束条件的目标优化问题,然后利用径向基(RBF)核函数可导的性质,用带有导数形式的LS-SVM模型将此优化问题转化为LS-SVM回归问题,进而进行求解.最终得到的闭式近似解具有精度高、连续可微、结构简单且形式固定的特点.该方法适用于任意阶非刚性和奇异的线性常微分方程初值问题和边值问题,以及一阶非线性常微分方程问题.仿真结果验证了该方法具有良好的有效性. In this paper we present a new method to solve ordinary differential equations (ODEs) by using Least Squares Support Vector Machines (LS-SVMs). We discretize the computational domain to make a transition from the ODEs to an op-timization problem with constraint conditions, then transform the problem into a derivative formed LS-SVM regression by using the differentiable RBF kernel and solve it. The high-accuracy differentiable approximate solution with simple and fixed structure is obtained in closed form. The method is applicable for solving any order non-stiff and singular linear ODEs with initial or boundary conditions, and first or-der nonlinear ODEs. Numerical simulation results demonstrate the efficiency of the method.
出处 《系统科学与数学》 CSCD 北大核心 2013年第6期695-707,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61074088)资助项目
关键词 最小二乘支持向量机 常微分方程 近似解 优化问题 Least squares support vector machines, ordinary differential equations,approximate solution, optimization problem.
  • 相关文献

参考文献12

  • 1李荣华,刘播.微分方程数值解法(第四版).北京:高等教育出版社,2009.
  • 2Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000.
  • 3Tsoulos I G, Gavrilis D, Glavas E. Solving differential equations with constructed neural networks. Neurocomputing, 2009, T2: 2385-2391.
  • 4Mehrkanoon S, Falck T, Suykens J A K. Approximate solutions to ordinary differential equations using least squares support vector machines. IEEE Trans. on Neural Networks and Learning Systems, 2012, 23(9): 1356-1367.
  • 5Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer - Verlag, 1995.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300.
  • 7Suykens J A K. Nonlinear Modeling and Support Vector Machines. Procedding of the IEEE International Conference on Instrumentation and Measurement Technology, N J, IEEE, 2001, 287-294.
  • 8Suykens J A K, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines. Singapore: World Scientific Pub. Co., 2002.
  • 9Falck T, Dreesen P, De Brabanter K, Pelckmans K, De Moor B, Suykens J A K. Least-squares support vector machines for the identification of Wiener-Hammerstein systems. Control Engi- neering Practice, 2012, 20(11): 1165-1174.
  • 10Suykens J A K. Support vector machines: A nonlinear modeling and control perspective. Euro- pean Journal of Control, 2001, 7(2/3): 311-327.

共引文献1

同被引文献34

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部