期刊文献+

对流占优问题稳定化的扩展混合有限元方法

The Stabilized Expanded Mixed Finite Element Method for Convection-dominated Problems
原文传递
导出
摘要 讨论了对流占优问题稳定化的扩展混合元数值模拟.把稳定化的思想与扩展混合元方法相结合,既可以高精度逼近未知函数,未知函数的梯度及伴随向量函数,又能保证格式的稳定性.理论分析表明,方法是有效的,具有最优L^2逼近精度. In this paper, we investigate a stabilized expanded mixed finite element approx- imation of convection dominated problems. Theoretical analysis shows that the method can approximate the scalar unknown function, its gradient and flux function optimally. Moreover, we prove that the scheme is more stable than the standard expanded mixed finite element method.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第16期248-254,共7页 Mathematics in Practice and Theory
基金 山东省自然科学基金(ZR2009AZ003) 山东交通学院科研基金(Z201134)
关键词 对流占优问题 稳定化的扩展混合有限元 最优误差估计 convection-dominated equations stabilized expanded mixed finite element methodoptimal error estimate
  • 相关文献

参考文献3

二级参考文献20

  • 1Ling Guo,Huan-zhen Chen.AN EXPANDED CHARACTERISTIC-MIXED FINITE ELEMENT METHOD FOR A CONVECTION-DOMINATED TRANSPORT PROBLEM[J].Journal of Computational Mathematics,2005,23(5):479-490. 被引量:7
  • 2Z. Chen, Expand Mixed Finite Element Method For Linear Second Elliptic Problems, M^2AN Modelisation mathgmatique et Analyse numgrique, 32 (1998), 479-499.
  • 3M.R. Todd, P.M. O'Dell, G.J. Hirasaki, Methods for increased accuracy in numerical reservoir simulations, Soc. Petrol. Engry. J., 12 (1972), 929-963.
  • 4J. Douglas, Jr., T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,SIAM J. Nurner. Anal., 19 (1982), 871-885.
  • 5C. Johnson, Streamline diffusion methods for problems in fluid mechanics, in Finite Elements in fluids VI, Wiley, New York, 1986.
  • 6P.A. Raviart, T.M. Thomas, A mixed finite element methods for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. Vol. 606, Springer-Verlag,Berlin, 1977, 292-315.
  • 7D.N. Arnolds, L.R. Scott, M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, C1. Sciserie. IVXV, 1988,169-192.
  • 8J. Douglas, Jr., J.E. Roberts, Global estimates for mixed methods for second order elliptic equations,Math. Comp., 44 (1985), 39-52.
  • 9D.P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comp., 69, 2000, 929-963.
  • 10F. Brezzi, J. Douglas Jr., R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variavles, Numer Math., 51 (1987), 237-250.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部