期刊文献+

基于图半监督学习的医学图像检索 被引量:10

Medical Image Retrieval by Graph-based Semi-supervised Learning
下载PDF
导出
摘要 针对医学图像检索中底层特征不能完整地描述图像的高层语义的问题,提出一种基于图的半监督学习框架的医学图像检索算法.首先根据图像之间的距离关系构建图模型,并在标记传播过程中加入密度相似性约束,得到查询图像的类别归属度,即图像的视觉语义表示;然后提取图像分块SIFT特征,用词袋进行描述,以获取图像的局部特征;最后设计了结合视觉语义和局部特征的相似性度量准则.在ImageCLEFmed上的实验结果表明,该算法能够有效地表达图像的视觉语义,检索效率优于单一底层特征检索. As low level features can not reflect the high level semantic in medical image search, an image retrieval algorithm is proposed by graph-based semi-supervised learning frame. Firstly, a graph model is constructed by distance between images, and density similarity constrained in the label propagation progress is added to get the membership degree of query images, called visual semantic representation; then the dense SIFT feature of the image blocks is extracted and described with bag of visual words, in order to get the local feature; Finally, a combination of visual concept and local feature strategy is designed for similarity measurement. Experimental results of ImageCLEFmed database demonstrate that the proposed algorithm represents the visual semantic of images effectively, and achieves a better retrieval performance than single low level feature.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第9期1354-1360,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 自然科学基金(60805003)
关键词 基于内容的医学图像检索 基于图的半监督学习 视觉语义 词袋 content-based medical image retrieval graph-based semi-supervised learning visual semantic bag of words
  • 相关文献

参考文献3

二级参考文献98

  • 1夏顺仁,莫伟荣,王小英,严勇.基于特征融合和相关反馈的医学图像检索技术[J].航天医学与医学工程,2004,17(6):429-433. 被引量:7
  • 2Müller H,Michoux N,Bandon D,et al.A review of content-based image retrieval systems in medical applications clinical benefits and future directions[J].Medical Informatics,2004,73(1):1-23.
  • 3Rahman M M,Bhattacharya P,Desai B C.A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback[J].IEEE Transactions on Information Technology in Biomedicine,2007,11(1):58-69.
  • 4Zhou X S,Huang T S.Relevance feedback in image retrieval:a comprehensive review[J].Multimedia Systems,2003,8(6):536-544.
  • 5Greenspan H,Pinhas A T.Medical image categorization and retrieval for PACS using the GMM-KL framework[J].IEEE Transactions on Information Technology in Biomedicine,2007,11(2):190-202.
  • 6Selvarani A G,Annadurai D S.Medical image retrieval by combining low level features and DICOM features[C]//Proceedings of International Conference on Computational Intelligence and Multimedia Application,Sivakasi,2007:587-591.
  • 7Zhang G,Ma Z M.Texture feature extraction and description using Gabor wavelet in content-based medical image retrieval[C]//Proceedings of International Conference on Wavelet Analysis and Pattern Recognition,Beijing,2007:169-173.
  • 8Zhang Y Y,Brady M,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Transactions on Medical Imaging,2001,20(1):45-57.
  • 9Veropoulos K,Campbell C,Learnmonth G.Image processing and neural computing used in the diagnosis of tuberculosis[C]//Proceedings of Intelligent Methods in Heahhcare and Medical Applications,York,1998:72-76.
  • 10Noble J A,Boukerroui D.Ultrasound image segmentation,a survey[J].IEEE Transactions on Medical Imaging,2006,25(8):987-1010.

共引文献20

同被引文献96

  • 1司海棠,秦小麟,郝学峰.基于Voronoik阶邻近的目标预警预报方法[J].计算机应用,2009(2):598-601. 被引量:2
  • 2曾光,胡卫东,卢建斌,周文辉.多功能相控阵雷达自适应调度仿真[J].系统仿真学报,2004,16(9):2026-2029. 被引量:20
  • 3吴友政,赵军,徐波.基于无监督学习的问答模式抽取技术[J].中文信息学报,2007,21(2):69-76. 被引量:9
  • 4曲吉林,寇纪淞,李敏强,安世虎.基于Voronoi图的异常检测算法[J].计算机工程,2007,33(23):35-36. 被引量:5
  • 5Qin J Z, Yung N H C. Feature fusion within local region usinglocalized maximum-margin learning for scene categorization[J]. Pattern Recognition, 2012, 45(4): 1671-1683.
  • 6Quelhas P, Monay F, Odobez J M, et al. A thousand words in ascene [J]. IEEE Transactions on Pattern Analysis and MachineIntelligence, 2007, 29(9): 1575-1589.
  • 7Kesorn K, Poslad S. An enhanced bag-of-visual word vectorspace model to represent visual content in athletics images [J].IEEE Transactions on Multimedia, 2012, 14(1): 211-222.
  • 8Fernando B, Fromont E, Muselet D, et al. Supervised learningof Gaussian mixture models for visual vocabulary generation[J]. Pattern Recognition, 2012, 45(2): 897-907.
  • 9Sánchez J, Perronnin F, Mensink T, et al. Image classificationwith the fisher vector: theory and practice [J]. InternationalJournal of Computer Vision, 2013, 105(3): 222-245.
  • 10Wille R. Restructuring lattice theory: an approach based on hierarchiesof concepts [M] // Rival I. Ordered Sets, vol 83.Dordrecht: Reidel, 1982: 445-470.

引证文献10

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部