期刊文献+

基于领域关系广义混合模型图像分割的研究

Generalized mixture model with spatial neighborhood relationship for image segmentation
下载PDF
导出
摘要 针对高斯混合模型不能有效处理复杂噪声图像分割问题,提出了基于领域关系广义混合模型。在高斯混合模型基础上引入形状参数r提高混合模型对不同噪声适应能力,另外该方法结合图像中像素点邻域关系,融入像素点间的互动信息。与混合模型通常采用EM算法估计参数不同,该模型参数估计采用梯度方法,通过最小化负似然对数优化参数。实验结果表明,广义混合模型在处理高斯噪声,重尾噪声,混合噪声以及脉冲噪声图像分割问题都取得了很好的效果。 To solve the problem that Gaussian mixture model can not deal with image segmentation with complex noise, a gener- alized mixture model is proposed. By introducing shape parameter r into Gaussian mixture model, the ability of the model adap- ting to multiple noises is improved, besides, the spatial relationship between neighboring pixels is also taken into account. In or- der to estimate the model parameters from observations, instead of utilizing an expectation-maximization algorithm, the gra-dient method is employed to minimize a higher bound on the data negative log-likelihood. The experimental results show that the pro- posed generalized mixture model has achieved good results in dealing with image segmentation with impulse/Gaussian noise, heavy-tailed and even mixed noise.
作者 罗雷 王士同
出处 《计算机工程与设计》 CSCD 北大核心 2013年第9期3168-3173,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61272210) 江苏省自然科学基金项目(BK2012552)
关键词 图像分割 广义混合模型 领域关系 多种噪声 image segmentation generalized mixture model spatial neighborhood relationships multiple noise
  • 相关文献

参考文献1

二级参考文献14

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2Mukherjee A and Sengupta A.Estimating the probability density function of a nonstationary non-Gaussian noise[J].IEEE Transactions on Industrial Electronics,2010,57(4):1429-1435.
  • 3Duda R O,Hart P E,and Stork D G.Pattern Classification[M].Wiley-Interscience Publication,2000:20-102.
  • 4Wang Zhi-min and Song Qing.Robust curve clustering based on a multivariate t-distribution model[J].IEEE Transactions on Neural Networks,2010,21(12):1976-1984.
  • 5John S T and Cristianini N.Kernel Methods for Pattern Analysis[M].Cambridge University Press,2004:289-325.
  • 6Zhang Yan and Zhang Tao.Kernel-based Bayesian face recognition[C].2009Fifth International Conference on Natural Computation,Tianjin,China,2009,7:568-572.
  • 7Ruiz A and Lopez-de Teruel P E.Nonlinear kernel-based statistical pattern analysis[J].IEEE Transactions on Neural Networks,2001,12(1):16-32.
  • 8Zhao Hai-tao,Yuen Pong-chi,and Kwok J T.A novel incremental principal component analysis and its application for face recognition[J].IEEE Transactions on Systems,Man,and Cybernetics,2006,36(4):873-886.
  • 9Xu Zeng-lin,Huang Kai-zhu,Zhu Jian-ke,et al.A novel kernel-based maximum a posteriori classification method[J].Neural Networks,2009,22(7):977-987.
  • 10Sch lkopf B,Smola A,and Müller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部