期刊文献+

基于带回溯机制冒泡排序法的矩阵最佳分块研究 被引量:1

The Analyzing About the Optimal Solution of Blocked Matrix-Based on Bubble Sort Method With Backtracking Mechanism
下载PDF
导出
摘要 为了解决大型、超大型矩阵计算中处理速度较慢的问题,采用代数学、算法学相结合的方法,对缺乏实际分块标准与方法的矩阵分块问题进行探讨。通过引入带回溯机制的冒泡排序法,有效地建立了矩阵最佳分块方法。在此基础上,将最佳分块方法从理论上应用于矩阵乘积运算中,从而为降低复杂矩阵运算复杂度提出了切实可行的明确的改善方法。 In order to solve the problem of large, super large matrix calculation of slower processing speed problem, using algebra, arithmetic method, the lack of actual block standard and method of block matrix problems. By introducing a backtracking mechanism of bubble sort method, effectively established the optimal partition method. On the basis of this, the optimal partitioning method from the theory is applied to the matrix multiplication, so as to reduce the computing complexity of complex matrix and proposes some practical and feasible clear improvement method.
出处 《科技通报》 北大核心 2013年第8期7-9,共3页 Bulletin of Science and Technology
关键词 矩阵 分块 回溯 冒泡 最佳 matrix block retrospective bubble optimal
  • 相关文献

参考文献3

二级参考文献14

  • 1张景晓,焦德杰,孔淑霞.“爪”字形和“么”字形行列式的计算[J].河北理科教学研究,2006(4):56-58. 被引量:2
  • 2Jeannerod C P,Zhi L.Computing low rank generators of Sylvester matrix embeddings.Manuscript,2002.
  • 3Li Bingyu,Liu Zhuojun,Zhi Lihong.A structured rank-revealing method for Sylvester matrix[J].Journal of Computational and Applied Mathematics,2008,213:212-223.
  • 4Li Bingyu,Liu Zhuojun,Zhi Lihong.A fast algorithm for solving the Sylvester structured total least squares problem[J].Signal Processing,2007,87:2313-2319.
  • 5Maroulas J,Dascalopoulos D.Applications of the generalized Sylvester matrix[J].Applied Mathematics and Computation,1981,8(2):121-135.
  • 6Basilio J C,Kouvaritakis B.An algorithm for coprime matrix fraction description using Sylvester matrices[J].Linear Algebra and its Applications,1997,266:107-125.
  • 7Pan Y V.Structured Matrices and Polynomials.Springer,New York,2001.
  • 8Lee Daniel D, Seung H Sebastian. Learning the parts of objects by non-negative matrix factorization [ J]. Nature, 1999, 401 (6755): 788-791.
  • 9Daniel D Lee, Sebastian Seung H. Algorithms for nonnegative matrix factorization [ C ]//Advances in Neural Information Processing Systems 13. Cambridge, MA: MIT Press, 2001(13): 556-562.
  • 10Chih-Jen Lin. Projected gradient methods for non-negative matrix factorization[ J ]. Neural Computation, 2007, 19 (10): 1-27.

共引文献6

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部