期刊文献+

基于拓展的AVL理论的行列式列主元快速求解

The Analyzing About Fast Solving Determinant-Based on the Extended AVL Theory
下载PDF
导出
摘要 为了解决大型行列式计算中速度较慢的问题,采用多学科相结合的方法,对经典的列主元消去法进行探讨。通过将AVL理论进行拓展,将其应用到行列式计算中。在行列式列主元求解中,应用拓展的AVL理论,全面制定了行列式求解步骤和过程。与此同时,通过复杂度分析对基于拓展的AVL理论的行列式快速求解方法进行了定量分析,从而确定了改进方法的先进性、科学性和稳定性,为全面降低大型、超大型行列式运算复杂度提出了切实可行的明确的改善方法。 In order to solve large-scale, large-scale computing. The problem of low speed, using computer algorithms, al- gebra and other scientific methods combined, the classic main element elimination method are discussed. The AVL theo- ry development, which will be applied to computing. In the determinant of PCA solving, application of AVL theory, de- veloped a comprehensive determinant solution procedure and process. At the same time, through algorithm complexity analysis based on extended AVL theory of fast calculation method of quantitative analysis, thus determining the improve- ment method is advanced, scientific sex and stability, to reduce overall large, super large determinant computation com- plexity presents practical clear improvement method.
作者 陈金萍
出处 《科技通报》 北大核心 2013年第8期19-21,共3页 Bulletin of Science and Technology
关键词 行列式 AVL 拓展 快速 determinant AVL extend quick solution
  • 相关文献

参考文献5

二级参考文献37

  • 1杨昌兰,王龙波.Hermite矩阵方程[J].Journal of Mathematical Research and Exposition,2004,24(3):500-502. 被引量:21
  • 2张景晓,焦德杰,孔淑霞.“爪”字形和“么”字形行列式的计算[J].河北理科教学研究,2006(4):56-58. 被引量:2
  • 3GRAMAA.并行计算导论[M].张武,译.北京:机械工业出版社,2005.
  • 4Jia Zhongxiao. A Refined Iterative Algorithm Based on the Block Arnoldi Process for Large Unsymmetric Eigenproblems[J]. Linear Algebra Appl., 1998, 270(1): 171-189.
  • 5Hernandez V, Roman J E, Tomas A. Parallel Arnoldi Eigensolvers with Enhanced Scalability via Global Communications Rearrangement[J]. Parallel Computing, 2007, 33(7): 521-540.
  • 6Smoktunowicz A, Barlow J L, Langou J. A Note on the Error Analysis of Classical Gram-Schmidt[J]. Numerische Mathematik, 2006, 105(2): 299-313.
  • 7Blackford L, Choi J, Cleary A, et al. ScaLAPACK Users' Guide[M]. Philadelphia, USA: SIAM, 1997.
  • 8同济大学数学教研室.线性代数[M].高等教育出版社.
  • 9同济大学数学教研室.概率论[M].高等教育出版.
  • 10嘉木工作室.Mathematica应用实例教程[M].机械工业出版社.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部