期刊文献+

基于多特征融合的Web图像聚类算法 被引量:4

Web Image Clustering Algorithm Based on Multi-features Fusion
下载PDF
导出
摘要 提出了一种融合多种图像特征信息的Web图像聚类算法。本文的创新点主要表现在:将具有"图像标签","时间信息"",地理信息"以及"视觉特征"等多种特征的Web图像的聚类问题转换为K分图的划分问题。接下来将K分图的划分转化为若干个二分图的加权划分问题,利用对角矩阵和拉普拉斯矩阵,对K-1个目标函数进行线性加权,利用二次约束二次规划而完成对K分图的划分。通过对上述过程进行迭代运算得到Web图像的聚类结果。实验结果表明,本文算法通过对图像的多种特征信息的有效融合,降低了聚类的错误率,有效提高了Web图像聚类性能。 This paper proposes a Web image clustering algorithm by integrating a variety of image features. The main in- novations of this paper lie in that Web image clustering problem is converted to the K-partite graph partitioning problem, and the multi-features of Web images include "image tag", "time information", "geographic information", and "visual features". Afterwards, K-partite graph partitioning problem is solved by several weighted bipartite graphs partitioning. Based on the diagonal matrix and Laplacian matrix, K-1 linear weighted objective functions are calculated by secondary constrained quadratic programming to obtain the results of K-partite graph partitioning. Next, the Web image clustering results can be obtained by iterative calculation of the above process. The experimental results show that the proposed al- gorithm can effectively reduce the error rate of the clustering and then improve the performance of Web image clustering through the effective multi-features fusion
作者 方加娟
出处 《科技通报》 北大核心 2013年第8期97-99,共3页 Bulletin of Science and Technology
基金 河南省社会科学界联合会与河南省经济学团体联合会调研课题(SKL-2012-718)
关键词 多特征融合 WEB图像 聚类 图模型 multi-feature fusion web image clustering graph model
  • 相关文献

参考文献4

  • 1S Gordon,H Greenspan and J Goldberger.Applying theinformation bottleneck principle to unsupervised cluster-ing of discrete and continuous image representations[C]//.In proc.of IEEE ICCV,2003.
  • 2A K Jain,M N Murty and P J Flynn.Data clustering:a re-view[J].ACM Comput.Surv,1999,31(3):264-323.
  • 3G.Qiu.Image and feature co-clustering[C]//.In proc.ofIEEE ICPR,2004.
  • 4乌岚.基于多样约束模型的远程教育数据库优化查询算法[J].科技通报,2013,29(1):154-156. 被引量:35

二级参考文献6

共引文献34

同被引文献17

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部