摘要
提出了一种融合多种图像特征信息的Web图像聚类算法。本文的创新点主要表现在:将具有"图像标签","时间信息"",地理信息"以及"视觉特征"等多种特征的Web图像的聚类问题转换为K分图的划分问题。接下来将K分图的划分转化为若干个二分图的加权划分问题,利用对角矩阵和拉普拉斯矩阵,对K-1个目标函数进行线性加权,利用二次约束二次规划而完成对K分图的划分。通过对上述过程进行迭代运算得到Web图像的聚类结果。实验结果表明,本文算法通过对图像的多种特征信息的有效融合,降低了聚类的错误率,有效提高了Web图像聚类性能。
This paper proposes a Web image clustering algorithm by integrating a variety of image features. The main in- novations of this paper lie in that Web image clustering problem is converted to the K-partite graph partitioning problem, and the multi-features of Web images include "image tag", "time information", "geographic information", and "visual features". Afterwards, K-partite graph partitioning problem is solved by several weighted bipartite graphs partitioning. Based on the diagonal matrix and Laplacian matrix, K-1 linear weighted objective functions are calculated by secondary constrained quadratic programming to obtain the results of K-partite graph partitioning. Next, the Web image clustering results can be obtained by iterative calculation of the above process. The experimental results show that the proposed al- gorithm can effectively reduce the error rate of the clustering and then improve the performance of Web image clustering through the effective multi-features fusion
出处
《科技通报》
北大核心
2013年第8期97-99,共3页
Bulletin of Science and Technology
基金
河南省社会科学界联合会与河南省经济学团体联合会调研课题(SKL-2012-718)
关键词
多特征融合
WEB图像
聚类
图模型
multi-feature fusion
web image
clustering
graph model