期刊文献+

核PCA神经网络集成算法在文本识别中的应用 被引量:3

A Neural Network Ensemble Algorithm Based on Kernel Principal Component Analysis and Its Application on Text Classification
下载PDF
导出
摘要 文本识别问题是模式分类中的一类重要的识别问题,也是较难处理的一类。该类问题中往往存在很多冗余属性,因此传统的分类方法对它的效果一般不好。本文针对文本识别问题,提出了一种基于核主成分分析的神经网络集成算法,该算法首先利用核主成分分析进行降维,合理的去除冗余属性,然后再利用神经网络集成算法进行分类学习。在文本分类数据集上的实验说明,本文算法可以有效地提高文本分类问题的分类性能。 Text recognition problem is an important class of recognition problems in pattern classification, and it is also more difficult to deal with. Since there is often a lot of redundant attributes for this kind of problem, so the effect of traditional classification methods is not very well. In this paper, for the problem of text recognition, a neural network ensemble algorithm based on kernel principal component analysis is proposed. The algorithm first use kernel principal component analysis to reduce the dimensionality, removing redundant attributes reasonable. Then use the neural network ensemble algorithm to classify. Experiments on text classification data sets illustrate the algorithm can effectively improve the classification performance of the text classification problem.
机构地区 西南林业大学
出处 《科技通报》 北大核心 2013年第8期124-126,共3页 Bulletin of Science and Technology
关键词 文本识别 冗余属性 核主成分分析 神经网络集成 text recognition redundant attributes kernel principal component analysis neural network ensemble
  • 相关文献

参考文献7

  • 1王文震.基于流形学习的视频中文文本检测算法[J].科技通报,2012,28(10):46-48. 被引量:11
  • 2HanJW,KamberM著.范明译.Data Mining Conceptsand Techniques,第二版[M].北京:机械工业出版社,2001:257-259.
  • 3王正群,陈世福,陈兆乾.并行学习神经网络集成方法[J].计算机学报,2005,28(3):402-408. 被引量:36
  • 4Schapire R E.The strength of weak learnability[J].Machine Learning[J].1990,5(2):197-227.
  • 5Friedman L.Bagging predictors[J].Machine Learning[J].1996,24(2):123-140.
  • 6Zhou Z,Wu J,Tang W.Ensemble neural networks:Manycould be better than all[J].Artificial Intelligence.2002,137(1-2):239-263.
  • 7Kohavi R.A study of cross-validation and bootstrap foraccuracy estimation and model selection.[C]//Wermter S,Riloff E,Scheler G,EDS.PROC.14TH Joint INT.CONF.Artificial intelligence.San Mateo,Ca:Morgan Kaufmann,1995:1137-1145.

二级参考文献17

  • 1谢毓湘,栾悉道,吴玲达,老松杨.新闻视频帧中的字幕探测[J].计算机工程,2004,30(20):167-168. 被引量:15
  • 2Solice P., Krogh A.. Learning with ensembles: How over-Fiting can be useful. In: Touretzky D., Mozer M., Hasselmo M. eds.. Advances in Neural Information Processing Systems, 1995, 7: 231~238.
  • 3Schapire R.E.. The strength of weak learnability. Machine Learning, 1990, 5(2): 197~227.
  • 4Friedman L.. Bagging predictors. Machine Learning, 1996, 24(2): 123~140.
  • 5Jang M., Cho S.. Observational learning algorithm for an ensemble of neural networks. Pattern Analysis & Applications, 2002, 5: 154~167.
  • 6Zhou Z.-H., Wu J.-X., Tang W.. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002, 137(1~2): 239~263.
  • 7Zhou Z.-H., Wu J.-X., Tang W., Chen Z.-Q.. Combining regression estimator: GA-based selective neural network Ensemble. International Journal of Computational Intelligence and Applications, 2001, 1(4): 341~356.
  • 8Perrone M.P., Cooper L.N.. When networks disagree: Ensemble method for neural networks. In: Mammone R.J. eds.. Artificial Neural Networks for Speed and Vision, New York: Chapman & Hall, 1993, 126~142.
  • 9Opitz D., Shavlik J.. Actively searching for an efficient neural network ensemble. Connection Science, 1996, 8(3~4): 337~353.
  • 10Krogh A., Vedelsby J.. Neural network ensembles, cross validation, and active learning. In: Touretzky D., Leen T. eds.. Advance in Neural Information Processing Systems &, Cambridge, MA: MITPress, 1995, 231~238.

共引文献46

同被引文献15

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部